Giải bài tập 9.40 trang 92 SGK Toán 9 tập 2 - Kết nối tri thức

Cho tam giác ABC có các đường cao BE, CF cắt nhau tại H. Gọi M là trung điểm của BC và I là trung điểm của AH. Chứng minh rằng: a) Tứ giác AEHF nội tiếp đường tròn tâm I; b) ME, MF tiếp xúc với đường tròn ngoại tiếp tứ giác AEHF.

Quảng cáo

Đề bài

Cho tam giác ABC có các đường cao BE, CF cắt nhau tại H. Gọi M là trung điểm của BC và I là trung điểm của AH. Chứng minh rằng:

a) Tứ giác AEHF nội tiếp đường tròn tâm I;

b) ME, MF tiếp xúc với đường tròn ngoại tiếp tứ giác AEHF.

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

a) + Chứng minh AEH^=AFH^=90o nên tam giác AEH vuông tại E, tam giác AHF vuông tại F.

+ Suy ra, tứ giác AEHF nội tiếp đường tròn tâm I.

b) Chứng minh IEA^=EBC^, MCE^=MEC^, ECB^+EBC^=90o nên MEC^+IEA^=90o.

+ Tính được IEM^=90o nên IEME tại M, nên ME tiếp xúc với đường tròn ngoại tiếp tứ giác AEHF.

+ Chứng minh tương tự ta có: MF tiếp xúc với đường tròn ngoại tiếp tứ giác AEHF.

Lời giải chi tiết

a) Vì BE, CF là đường cao của ΔABC nên BEAC,CFABAEH^=AFH^=BFC^=BEC^=90o

Do đó, tam giác AFH vuông tại F và tam giác AEH vuông tại E.

Suy ra, bốn điểm A, E, H, F cùng thuộc đường tròn đường kính AH.

Mà I là trung điểm của AH nên tứ giác AEHF nội tiếp đường tròn tâm I.

b) Vì tứ giác AEHF nội tiếp đường tròn tâm I nên IA=IE. Do đó, ΔIAE cân tại I nên IAE^=IEA^.

Lại có: EAI^=EBC^ (cùng phụ với góc ACB) nên IEA^=EBC^ (1)

ΔBEC vuông tại E, EM là đường trung tuyến nên EM=MC. Do đó, ΔMEC cân tại M.

Suy ra, MCE^=MEC^ (2)

ΔBEC vuông tại E nên ECB^+EBC^=90o (3)

Từ (1), (2) và (3) ta có: MEC^+IEA^=90o.

MEC^+IEA^+IEH^+HEM^=180oIEM^=90o. Do đó, IEME tại M. Mà E thuộc đường tròn ngoại tiếp tứ giác AEHF nên ME tiếp xúc với đường tròn ngoại tiếp tứ giác AEHF.

Chứng minh tương tự ta có: MF tiếp xúc với đường tròn ngoại tiếp tứ giác AEHF.

Quảng cáo

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí

>> Học trực tuyến Lớp 9 & Lộ trình UP10 trên Tuyensinh247.com

>> Chi tiết khoá học xem: TẠI ĐÂY

Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều), theo lộ trình 3: Nền Tảng, Luyện Thi, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả.

close