Giải bài tập 9.2 trang 71 SGK Toán 9 tập 2 - Kết nối tri thứcCho các điểm như Hình 9.7. Tính số đo các góc của tam giác ABC, biết rằng (widehat {AOB} = {120^o},widehat {BOC} = {80^o}). Quảng cáo
Đề bài Cho các điểm như Hình 9.7. Tính số đo các góc của tam giác ABC, biết rằng \(\widehat {AOB} = {120^o},\widehat {BOC} = {80^o}\). Video hướng dẫn giải Phương pháp giải - Xem chi tiết Xét đường tròn (O) có: + Vì góc ở tâm AOB và góc nội tiếp ACB cùng chắn cung nhỏ AB nên \(\widehat {ACB} = \frac{1}{2}\widehat {AOB}\). + Vì góc ở tâm COB và góc nội tiếp CAB cùng chắn cung nhỏ BC nên \(\widehat {CAB} = \frac{1}{2}\widehat {COB}\). + Tam giác ABC có: \(\widehat {ABC} = {180^o} - \widehat {BAC} - \widehat {ACB}\). Lời giải chi tiết Xét đường tròn (O) có: - Góc ở tâm AOB và góc nội tiếp ACB cùng chắn cung nhỏ AB nên \(\widehat {ACB} = \frac{1}{2}\widehat {AOB} = \frac{1}{2}{.120^o} = {60^o}\). - Góc ở tâm COB và góc nội tiếp CAB cùng chắn cung nhỏ BC nên \(\widehat {CAB} = \frac{1}{2}\widehat {COB} = \frac{1}{2}{.80^o} = {40^o}\). Tam giác ABC có: \(\widehat {ABC} = {180^o} - \widehat {BAC} - \widehat {ACB} = {180^o} - {40^o} - {60^o} = {80^o}\).
Quảng cáo
|