Giải bài tập 6.46 trang 30 SGK Toán 9 tập 2 - Kết nối tri thức

Cho hàm số (y = a{x^2}). Xác định hệ số a, biết đồ thị hàm số đi qua điểm A(3; 3). Vẽ đồ thị của hàm số trong trường hợp đó.

Quảng cáo

Đề bài

Cho hàm số \(y = a{x^2}\). Xác định hệ số a, biết đồ thị hàm số đi qua điểm A(3; 3). Vẽ đồ thị của hàm số trong trường hợp đó.

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

- Thay \(x = 3;y = 3\) vào hàm số \(y = a{x^2}\) để tìm a.

- Cách vẽ đồ thị hàm số \(y = a{x^2}\left( {a \ne 0} \right)\):

+ Lập bảng ghi một số cặp giá trị tương ứng của x và y.

+ Trong mặt phẳng tọa độ Oxy, biểu diễn các cặp điểm (x; y) trong bảng giá trị trên và nối chúng lại để được một đường cong là đồ thị của hàm số \(y = a{x^2}\left( {a \ne 0} \right)\).

Lời giải chi tiết

Đồ thị hàm số đi qua điểm A(3; 3) nên ta có: \(3 = a{.3^2} \Rightarrow a = \frac{1}{3}\). Do đó, hàm số cần tìm là: \(y = \frac{1}{3}{x^2}\).

Vẽ đồ thị hàm số \(y = \frac{1}{3}{x^2}\):

Lập bảng một số cặp giá trị tương ứng của x và y:

Biểu diễn các điểm \(\left( { - 3;3} \right),\left( { - 2;\frac{4}{3}} \right);\left( { - 1;\frac{1}{3}} \right);\left( {0;0} \right);\left( {1;\frac{1}{3}} \right),\left( {2;\frac{4}{3}} \right);\left( {3;3} \right)\) trên mặt phẳng tọa độ Oxy và nối chúng lại ta được đồ thị hàm số \(y = \frac{1}{3}{x^2}\) như hình vẽ.

  • Giải bài tập 6.47 trang 30 SGK Toán 9 tập 2 - Kết nối tri thức

    Giải các phương trình sau: a) (5{x^2} - 6sqrt 5 x + 2 = 0); b) (2{x^2} + 2sqrt 6 x + 3 = 0).

  • Giải bài tập 6.48 trang 31 SGK Toán 9 tập 2 - Kết nối tri thức

    Cho phương trình ({x^2} - 11x + 30 = 0). Gọi ({x_1},{x_2}) là hai nghiệm của phương trình. Không giải phương trình, hãy tính: a) (x_1^2 + x_2^2); b) (x_1^3 + x_2^3).

  • Giải bài tập 6.49 trang 31 SGK Toán 9 tập 2 - Kết nối tri thức

    Tìm hai số u và v, biết: a) (u + v = 13) và (uv = 40); b) (u - v = 4) và (uv = 77).

  • Giải bài tập 6.50 trang 31 SGK Toán 9 tập 2 - Kết nối tri thức

    Các kĩ sư đảm bảo an toàn của đường cao tốc thường sử dụng công thức (d = 0,05{v^2} + 1,1v) để ước tính khoảng cách an toàn tối thiểu d (feet) (tức là độ dài quãng đường mà xe đi được kể từ khi đạp phanh đến khi xe dừng lại) đối với một phương tiện di chuyển với tốc độ v (dặm/ giờ) (theo Algebra 2, NXB MacGraw-Hill, 2008). Giả sử giới hạn tốc độ trên một đường cao tốc nào đó là 70 dặm/ giờ. Nếu một ô tô có thể dừng lại sau 300 feet kể từ khi đạp phanh thì ô tô đó có chạy nhanh hơn giới hạn tốc

  • Giải bài tập 6.51 trang 31 SGK Toán 9 tập 2 - Kết nối tri thức

    Bác Hương gửi tiết kiệm ngân hàng 100 triệu đồng với kì hạn 12 tháng. Sau một năm, do chưa có nhu cầu sử dụng nên bác chưa rút sổ tiết kiệm này ra mà gửi tiếp và gửi thêm một sổ tiết kiệm mới với số tiền 50 triệu đồng, cũng với kì hạn 12 tháng. Sau hai năm (kể từ khi gửi lần đầu), bác Hương nhận được số tiền cả vỗn lẫn lãi là 176 triệu đồng. Tính lãi suất năm của hình thức gửi tiết kiệm này (giả sử lãi suất không đổi trong suốt quá trình gửi).

Quảng cáo

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí

close