Giải bài tập 6.41 trang 30 SGK Toán 9 tập 2 - Kết nối tri thức

Các nghiệm của phương trình ({x^2} + 7x + 12 = 0) là A. ({x_1} = 3;{x_2} = 4). B. ({x_1} = - 3;{x_2} = - 4). C. ({x_1} = 3;{x_2} = - 4). D. ({x_1} = - 3;{x_2} = 4).

Tổng hợp đề thi học kì 1 lớp 9 tất cả các môn - Kết nối tri thức

Toán - Văn - Anh - KHTN - Lịch sử và Địa lí

Quảng cáo

Đề bài

Các nghiệm của phương trình \({x^2} + 7x + 12 = 0\) là

A. \({x_1} = 3;{x_2} = 4\).

B. \({x_1} =  - 3;{x_2} =  - 4\).

C. \({x_1} = 3;{x_2} =  - 4\).

D. \({x_1} =  - 3;{x_2} = 4\).

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Xét phương trình bậc hai một ẩn \(a{x^2} + bx + c = 0\left( {a \ne 0} \right)\). Tính biệt thức \(\Delta  = {b^2} - 4ac\).

+ Nếu \(\Delta  > 0\) thì phương trình có hai nghiệm phân biệt: \({x_1} = \frac{{ - b + \sqrt \Delta  }}{{2a}};{x_2} = \frac{{ - b - \sqrt \Delta  }}{{2a}}\).

+ Nếu \(\Delta  = 0\) thì phương trình có nghiệm kép: \({x_1} = {x_2} = \frac{{ - b}}{{2a}}\).

+ Nếu \(\Delta  < 0\) thì phương trình vô nghiệm.

Lời giải chi tiết

Vì \(\Delta  = {7^2} - 4.1.12 = 1 > 0\) nên phương trình có hai nghiệm phân biệt: \({x_1} = \frac{{ - 7 + 1}}{2} =  - 3;{x_2} = \frac{{ - 7 - 1}}{2} =  - 4\)

Chọn B

Quảng cáo

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí

close