Giải bài tập 5.23 trang 103 SGK Toán 9 tập 1 - Kết nối tri thức

Cho SA và SB là hai tiếp tuyến cắt nhau của đường tròn (O) (A và B là hai tiếp điểm). Gọi M là một điểm tùy ý trên cung nhỏ AB. Tiếp tuyến của (O) tại M cắt SA tại E và cắt SB tại F. a) Chứng minh rằng chu vi của tam giác SEF bằng SA + SB. b) Giả sử M là giao điểm của đoạn SO với đường tròn (O). Chứng minh rằng SE = SF.

Quảng cáo

Đề bài

Cho SA và SB là hai tiếp tuyến cắt nhau của đường tròn (O) (A và B là hai tiếp điểm). Gọi M là một điểm tùy ý trên cung nhỏ AB. Tiếp tuyến của (O) tại M cắt SA tại E và cắt SB tại F.

a) Chứng minh rằng chu vi của tam giác SEF bằng SA + SB.

b) Giả sử M là giao điểm của đoạn SO với đường tròn (O). Chứng minh rằng SE = SF.

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Áp dụng tính chất của hai tiếp tuyến cắt nhau.

Lời giải chi tiết

a)

Hai tiếp tuyến EM và EA cắt nhau tại E nên EM = EA

Hai tiếp tuyến FM và EB cắt nhau tại F nên FM = FB

CΔSEF=SE+SF+EF=SE+SF+EM+MF=SE+EA+SF+BF=SA+SB

b)

SA và SB là hai tiếp tuyến cắt nhau tại S nên SO là phân giác của góc ^ASB.

^OSA=^OSB hay ^MSE=^MSF

Xét tam giác SME và tam giác SMF có:

^SME=^SMF=90

SM chung

^MSE=^MSF

ΔSME=ΔSMF (g.c.g)

SE=SF (hai cạnh tương ứng)

Quảng cáo

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí

>> Học trực tuyến lớp 9 & lộ trình Up 10! trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều), theo lộ trình 3: Nền Tảng, Luyện Thi, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả.

close