Giải bài tập 4 trang 123 SGK Toán 9 tập 1 - Cánh diều

Khi đóng đáy thuyền cho những con thuyền vượt biển, người Vikigns sử dụng hai loại nêm: nêm góc và nêm cong (lần lượt tô màu xanh, màu đỏ trong Hình 89). Mặt cắt (ABCD) của nêm góc có dạng hai tam giác vuông (OAE,ODE) bằng nhau với cạnh huyền chung và bỏ đi hình quạt tròn (OBC)(Hình 90), được làm từ những thân cây mọc thẳng. Mặt cắt (MNPQ) của nêm cong có dạng một phần của hình vành khuyên (Hình 91), được làm từ những thân cây cong. Kích thước của nêm cong được cho như ở Hình 91. a) Diệ

Quảng cáo

Đề bài

Khi đóng đáy thuyền cho những con thuyền vượt biển, người Vikigns sử dụng hai loại nêm: nêm góc và nêm cong (lần lượt tô màu xanh, màu đỏ trong Hình 89). Mặt cắt \(ABCD\) của nêm góc có dạng hai tam giác vuông \(OAE,ODE\) bằng nhau với cạnh huyền chung và bỏ đi hình quạt tròn \(OBC\)(Hình 90), được làm từ những thân cây mọc thẳng. Mặt cắt \(MNPQ\) của nêm cong có dạng một phần của hình vành khuyên (Hình 91), được làm từ những thân cây cong. Kích thước của nêm cong được cho như ở Hình 91.

a) Diện tích của nêm cong là bao nhiêu centimét vuông (lấy 1 ft = 30,48cm, 1 in = 2,54cm, \(\pi  = 3,14\) và làm tròn kết quả đến hàng đơn vị)?

b) Cần phải biết những kích thước nào của nêm góc để tính được diện tích của nêm đó?

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

a) Dựa vào kiến thức đã học để tính.

b) Dựa vào công thức: diện tích nêm góc = diện tích 2 tam giác - diện tích hình quạt OBC.

 

Lời giải chi tiết

a) Đổi \(3ft = 3.30,48 = 91,44cm\)

\(6in = 6.2,54 = 15,24 cm\)

+ Diện tích quạt tròn \(INP\) là:

\(S = \frac{{\pi {R^2}n}}{{360}} = \frac{{\pi {{.91,44}^2}.72}}{{360}} \approx 5254\left( {c{m^2}} \right)\)

+ Diện tích quạt tròn \(IMQ\) là:

\(S = \frac{{\pi {R^2}n}}{{360}} = \frac{{\pi {{\left( {91,44 + 15,24)} \right)}^2}.72}}{{360}}  \approx 7151\left( {c{m^2}} \right)\)

+ Diện tích của nêm cong là:

\(S = {S_{IMQ}} - {S_{INP}} \approx 7151 - 5254 \approx 1897\left( {c{m^2}} \right)\)

b) Diện tích nêm góc = diện tích 2 tam giác - diện tích hình quạt OBC.

\(S_{2\Delta} = 2.\frac{1}{2} OA.OE = OA.OE\)

\(S_{OBC} = \frac{\pi.OB^2.\widehat{BOC}}{360}\)

\(S_{nêm\;góc} = OA.AE - \frac{\pi.OB^2.\widehat{BOC}}{360}\)

Vậy để tính được diện tích của nêm góc cần biết: góc \(BOC\), cạnh OB, OA (hoặc AE).

  • Giải bài tập 3 trang 123 SGK Toán 9 tập 1 - Cánh diều

    Hình 88 mô tả mặt cắt của một khung gỗ có dạng ghép của năm hình: hai nửa đường tròn đường kính 2cm; hai hình chữ nhật kích thước (2cm times 8cm); một phần tư hình vành khuyên giới hạn bởi hai đường tròn cùng tâm có bán kính lần lượt là 4dm và 6dm. Tính diện tích của mặt cắt của khung gỗ đó.

  • Giải bài tập 2 trang 123 SGK Toán 9 tập 1 - Cánh diều

    Hình 87 mô tả mặt cắt của một chiếc đèn led có dạng hai hình vành khuyên màu trắng với bán kính các đường tròn lần lượt là 15cm, 18cm, 21cm, 24cm. Tính diện tích hình vành khuyên đó.

  • Giải bài tập 1 trang 122 SGK Toán 9 tập 1 - Cánh diều

    Quan sát các hình 83, 84, 85, 86. a) Tính diện tích phần được tô màu trong mỗi hình đó. b) Tính độ dài cung tròn được tô màu xanh ở mỗi hình 83, 84.

  • Giải mục 3 trang 122 SGK Toán 9 tập 1 - Cánh diều

    a) Hình 80 mô tả một phần bản vẽ của chi tiết máy. Hình đó giới hạn bởi mấy đường tròn cùng tâm? b) Hãy vẽ một hình tương tự Hình 80 bằng cách vẽ các đường tròn (left( {O;2cm} right)) và (left( {O;3cm} right)). Tính hiệu diện tích của hai hình tròn đó.

  • Giải mục 2 trang 119, 120, 121 SGK Toán 9 tập 1 - Cánh diều

    Vẽ đường tròn (left( {O;2cm} right)) và các điểm (A,B) thỏa mãn (OA < 2cm,OB = 2cm). Nêu nhận xét về vị trí của các điểm (A,B) so với đường tròn (left( {O;2cm} right)).

Quảng cáo

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí

close