Giải bài tập 3.29 trang 64 SGK Toán 9 tập 1 - Kết nối tri thứcTính giá trị của các biểu thức sau: a) (3sqrt {45} + frac{{5sqrt {15} }}{{sqrt 3 }} - 2sqrt {245} ;) b) (frac{{sqrt {12} - sqrt 4 }}{{sqrt 3 - 1}} - frac{{sqrt {21} + sqrt 7 }}{{sqrt 3 + 1}} + sqrt 7 ;) c) (frac{{3 - sqrt 3 }}{{1 - sqrt 3 }} + sqrt 3 left( {2sqrt 3 - 1} right) + sqrt {12} ;) d) (frac{{sqrt 3 - 1}}{{sqrt 2 }} + frac{{sqrt 2 }}{{sqrt 3 - 1}} - frac{6}{{sqrt 6 }}.) Tổng hợp đề thi giữa kì 1 lớp 9 tất cả các môn - Kết nối tri thức Toán - Văn - Anh - Khoa học tự nhiên Quảng cáo
Đề bài Tính giá trị của các biểu thức sau: a) \(3\sqrt {45} + \frac{{5\sqrt {15} }}{{\sqrt 3 }} - 2\sqrt {245} ;\) b) \(\frac{{\sqrt {12} - \sqrt 4 }}{{\sqrt 3 - 1}} - \frac{{\sqrt {21} + \sqrt 7 }}{{\sqrt 3 + 1}} + \sqrt 7 ;\) c) \(\frac{{3 - \sqrt 3 }}{{1 - \sqrt 3 }} + \sqrt 3 \left( {2\sqrt 3 - 1} \right) + \sqrt {12} ;\) d) \(\frac{{\sqrt 3 - 1}}{{\sqrt 2 }} + \frac{{\sqrt 2 }}{{\sqrt 3 - 1}} - \frac{6}{{\sqrt 6 }}.\) Video hướng dẫn giải Phương pháp giải - Xem chi tiết Sử dụng kết hợp các phương pháp trục căn thức, khai căn bặc hai, bậc ba, đưa thừa số ra ngoài dấu căn, rồi thu gọn biểu thức. Chú ý biểu thức nào rút gọn được luôn, ta rút gọn trước khi làm các phương pháp trên. Lời giải chi tiết a) \(3\sqrt {45} + \frac{{5\sqrt {15} }}{{\sqrt 3 }} - 2\sqrt {245} \) \(\begin{array}{l} = 3\sqrt {9.5} + \frac{{5\sqrt {3.5} }}{{\sqrt 3 }} - 2\sqrt {49.5} \\ = 9\sqrt 5 + 5\sqrt 5 - 14\sqrt 5 \\ = 0\end{array}\) b) \(\frac{{\sqrt {12} - \sqrt 4 }}{{\sqrt 3 - 1}} - \frac{{\sqrt {21} + \sqrt 7 }}{{\sqrt 3 + 1}} + \sqrt 7 \) \(\begin{array}{l} = \frac{{\sqrt 4 \left( {\sqrt 3 - 1} \right)}}{{\sqrt 3 - 1}} - \frac{{\sqrt 7 \left( {\sqrt 3 + 1} \right)}}{{\sqrt 3 + 1}} + \sqrt 7 \\ = 2 - \sqrt 7 + \sqrt 7 \\ = 2\end{array}\) c) \(\frac{{3 - \sqrt 3 }}{{1 - \sqrt 3 }} + \sqrt 3 \left( {2\sqrt 3 - 1} \right) + \sqrt {12} \) \(\begin{array}{l} = \frac{{\sqrt 3 \left( {\sqrt 3 - 1} \right)}}{{ - \left( {\sqrt 3 - 1} \right)}} + 6 - \sqrt 3 + \sqrt {4.3} \\ = - \sqrt 3 + 6 - \sqrt 3 + 2\sqrt 3 \\ = 6\end{array}\) d) \(\frac{{\sqrt 3 - 1}}{{\sqrt 2 }} + \frac{{\sqrt 2 }}{{\sqrt 3 - 1}} - \frac{6}{{\sqrt 6 }}\) \( = \frac{{\left( {\sqrt 3 - 1} \right)\sqrt 2 }}{{\sqrt 2 .\sqrt 2 }} + \frac{{\sqrt 2 \left( {\sqrt 3 + 1} \right)}}{{\left( {\sqrt 3 - 1} \right)\left( {\sqrt 3 + 1} \right)}} - \frac{{\sqrt 6 .\sqrt 6 }}{{\sqrt 6 }}\) \(\begin{array}{l} = \frac{{\sqrt 6 - \sqrt 2 }}{2} + \frac{{\sqrt 6 + \sqrt 2 }}{{3 - 1}} - \sqrt 6 \\ = \frac{{\sqrt 6 - \sqrt 2 + \sqrt 6 + \sqrt 2 }}{2} - \sqrt 6 \\ = \sqrt 6 - \sqrt 6 \\ = 0\end{array}\)
Quảng cáo
|