Giải bài tập 2 trang 90 SGK Toán 12 tập 2 - Kết nối tri thức

Giá trị lớn nhất M của hàm số \(y = \frac{{{x^2} + 3}}{{x - 1}}\) trên đoạn [2; 4] là A. \(M = 6\). B. \(M = 7\). C. \(M = \frac{{19}}{3}\). D. \(M = \frac{{20}}{3}\).

Quảng cáo

Đề bài

 

 

Giá trị lớn nhất M của hàm số \(y = \frac{{{x^2} + 3}}{{x - 1}}\) trên đoạn [2; 4] là

A. \(M = 6\).

B. \(M = 7\).

C. \(M = \frac{{19}}{3}\).

D. \(M = \frac{{20}}{3}\).

 

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức về cách tìm giá trị lớn nhất của hàm số trên một đoạn để tính: Giả sử \(y = f\left( x \right)\) là hàm số liên tục trên \(\left[ {a;b} \right]\) và có đạo hàm trên (a; b), có thể trừ ra tại một số hữu hạn điểm mà tại đó hàm số không có đạo hàm. Giả sử chỉ có hữu hạn điểm trong đoạn \(\left[ {a;b} \right]\) mà đạo hàm \(f'\left( x \right) = 0\).

Các bước tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn \(\left[ {a;b} \right]\):

1. Tìm các điểm \({x_1},{x_2},...{x_n} \in \left( {a;b} \right)\), tại đó \(f'\left( x \right) = 0\) hoặc không tồn tại.

2. Tính \(f\left( {{x_1}} \right);f\left( {{x_2}} \right);...;f\left( {{x_n}} \right)\), f(a) và f(b).

3. Tìm số lớn nhất M trong các số trên. Ta có: \(M = \mathop {\max }\limits_{\left[ {a;b} \right]} f\left( x \right)\)

 

Lời giải chi tiết

Ta có: \(y' = \frac{{\left( {{x^2} + 3} \right)'\left( {x - 1} \right) - {x^2} - 3}}{{{{\left( {x - 1} \right)}^2}}} = \frac{{2x\left( {x - 1} \right) - {x^2} - 3}}{{{{\left( {x - 1} \right)}^2}}} = \frac{{{x^2} - 2x - 3}}{{{{\left( {x - 1} \right)}^2}}} = \frac{{\left( {x + 1} \right)\left( {x - 3} \right)}}{{{{\left( {x - 1} \right)}^2}}}\)

\(y' = 0 \Leftrightarrow \left[ \begin{array}{l}x = 3\left( {TM} \right)\\x =  - 1\left( {KTM} \right)\end{array} \right.\)

Ta có: \(y\left( 2 \right) = 7,y\left( 4 \right) = \frac{{19}}{3},y\left( 3 \right) = 6\). Do đó, \(M = \mathop {\max }\limits_{\left[ {2;4} \right]} y = y\left( 2 \right) = 7\)

Chọn B.

 

  • Giải bài tập 3 trang 90 SGK Toán 12 tập 2 - Kết nối tri thức

    Tổng số các đường tiệm cận của đồ thị hàm số \(y = \frac{{\sqrt {{x^2} - 1} }}{x}\) là A. 0. B. 1. C. 2. D. 3.

  • Giải bài tập 4 trang 90 SGK Toán 12 tập 2 - Kết nối tri thức

    Đường cong trong hình bên là đồ thị của một trong bốn hàm số dưới đây. Hàm số đó là hàm số nào? A. \(y = - {x^3} + 3{x^2} + 1\). B. \(y = {x^3} - 3{x^2} + 3\). C. \(y = - {x^2} + 2x + 1\). D. \(y = \frac{{x + 1}}{{x - 1}}\).

  • Giải bài tập 5 trang 90 SGK Toán 12 tập 2 - Kết nối tri thức

    Cho hàm số \(f\left( x \right) = {x^2} + 3\). Khẳng định nào dưới đây là đúng? A. \(\int {f\left( x \right)dx} = 2x + C\). B. \(\int {f\left( x \right)dx} = {x^2} + 3x + C\). C. \(\int {f\left( x \right)dx} = {x^3} + 3x + C\). D. \(\int {f\left( x \right)dx} = \frac{{{x^3}}}{3} + 3x + C\).

  • Giải bài tập 6 trang 90 SGK Toán 12 tập 2 - Kết nối tri thức

    Cho hàm số f(x) thỏa mãn: \(f\left( 0 \right) = 1\) và \(f'\left( x \right) = 2\sin x + 1\). Khi đó \(\int\limits_0^{\frac{\pi }{2}} {f\left( x \right)dx} \) bằng A. \(\frac{{{\pi ^2} + 12\pi - 16}}{8}\). B. \(\frac{{{\pi ^2} - 4\pi + 16}}{8}\). C. \(\frac{{{\pi ^2} + 6\pi - 8}}{4}\). D. \(\frac{{{\pi ^2} - 2\pi + 8}}{4}\).

  • Giải bài tập 7 trang 90 SGK Toán 12 tập 2 - Kết nối tri thức

    Cho hàm số f(x) liên tục trên \(\mathbb{R}\). Gọi S là diện tích hình phẳng giới hạn bởi các đường \(y = f\left( x \right),y = 0,x = - 1\) và \(x = 4\) như hình bên. Khẳng định nào dưới đây là đúng? A. \(S = \int\limits_{ - 1}^1 {f\left( x \right)dx} + \int\limits_1^4 {f\left( x \right)dx} \). B. \(S = \int\limits_{ - 1}^1 {f\left( x \right)dx} - \int\limits_1^4 {f\left( x \right)dx} \). C. \(S = - \int\limits_{ - 1}^1 {f\left( x \right)dx} + \int\limits_1^4 {f\left( x \right)dx} \).

Quảng cáo

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close