Giải bài tập 4 trang 90 SGK Toán 12 tập 2 - Kết nối tri thức

Đường cong trong hình bên là đồ thị của một trong bốn hàm số dưới đây. Hàm số đó là hàm số nào? A. \(y = - {x^3} + 3{x^2} + 1\). B. \(y = {x^3} - 3{x^2} + 3\). C. \(y = - {x^2} + 2x + 1\). D. \(y = \frac{{x + 1}}{{x - 1}}\).

Tổng hợp đề thi giữa kì 1 lớp 12 tất cả các môn - Kết nối tri thức

Toán - Văn - Anh - Lí - Hóa - Sinh

Quảng cáo

Đề bài

 

 

Đường cong trong hình bên là đồ thị của một trong bốn hàm số dưới đây. Hàm số đó là hàm số nào?

A. \(y =  - {x^3} + 3{x^2} + 1\).

B. \(y = {x^3} - 3{x^2} + 3\).

C. \(y =  - {x^2} + 2x + 1\).

D. \(y = \frac{{x + 1}}{{x - 1}}\).

 

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức về dạng của đồ thị hàm số để chọn đáp án.

 

Lời giải chi tiết

Đây là là dạng của đồ thị hàm số bậc ba nên đáp án C, D sai.

Đồ thị hàm số trong hình vẽ đồng biến trên khoảng \(\left( { - \infty ;0} \right)\).

Xét hàm số: \(y = {x^3} - 3{x^2} + 3\) ta có: \(y' = 3{x^2} - 6x,y' = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 2\end{array} \right.\)

Do đó, hàm số \(y = {x^3} - 3{x^2} + 3\) đồng biến trên khoảng \(\left( { - \infty ;0} \right)\).

Chọn B

 

  • Giải bài tập 5 trang 90 SGK Toán 12 tập 2 - Kết nối tri thức

    Cho hàm số \(f\left( x \right) = {x^2} + 3\). Khẳng định nào dưới đây là đúng? A. \(\int {f\left( x \right)dx} = 2x + C\). B. \(\int {f\left( x \right)dx} = {x^2} + 3x + C\). C. \(\int {f\left( x \right)dx} = {x^3} + 3x + C\). D. \(\int {f\left( x \right)dx} = \frac{{{x^3}}}{3} + 3x + C\).

  • Giải bài tập 6 trang 90 SGK Toán 12 tập 2 - Kết nối tri thức

    Cho hàm số f(x) thỏa mãn: \(f\left( 0 \right) = 1\) và \(f'\left( x \right) = 2\sin x + 1\). Khi đó \(\int\limits_0^{\frac{\pi }{2}} {f\left( x \right)dx} \) bằng A. \(\frac{{{\pi ^2} + 12\pi - 16}}{8}\). B. \(\frac{{{\pi ^2} - 4\pi + 16}}{8}\). C. \(\frac{{{\pi ^2} + 6\pi - 8}}{4}\). D. \(\frac{{{\pi ^2} - 2\pi + 8}}{4}\).

  • Giải bài tập 7 trang 90 SGK Toán 12 tập 2 - Kết nối tri thức

    Cho hàm số f(x) liên tục trên \(\mathbb{R}\). Gọi S là diện tích hình phẳng giới hạn bởi các đường \(y = f\left( x \right),y = 0,x = - 1\) và \(x = 4\) như hình bên. Khẳng định nào dưới đây là đúng? A. \(S = \int\limits_{ - 1}^1 {f\left( x \right)dx} + \int\limits_1^4 {f\left( x \right)dx} \). B. \(S = \int\limits_{ - 1}^1 {f\left( x \right)dx} - \int\limits_1^4 {f\left( x \right)dx} \). C. \(S = - \int\limits_{ - 1}^1 {f\left( x \right)dx} + \int\limits_1^4 {f\left( x \right)dx} \).

  • Giải bài tập 8 trang 90 SGK Toán 12 tập 2 - Kết nối tri thức

    Gọi (H) là hình phẳng giới hạn bởi các đường \(y = 2\sqrt x ,y = 0,x = 0\) và \(x = 4\). Thể tích V của khối tròn xoay sinh ra khi quay hình phẳng (H) quanh trục Ox là A. \(V = 32\). B. \(V = 32\pi \). C. \(V = \frac{{32}}{3}\). D. \(V = \frac{{32\pi }}{3}\).

  • Giải bài tập 9 trang 91 SGK Toán 12 tập 2 - Kết nối tri thức

    Cho tứ diện ABCD, gọi G là trọng tâm của tam giác BCD và M là trung điểm của đoạn thẳng AG. Khi đó \(\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} + \overrightarrow {MD} \) bằng A. \(\overrightarrow {MG} \). B. \(2\overrightarrow {MG} \). C. \(3\overrightarrow {MG} \). D. \(4\overrightarrow {MG} \).

Quảng cáo

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close