Giải bài tập 2 trang 18 SGK Toán 12 tập 1 - Chân trời sáng tạoTìm giá trị lớn nhất, giá trị nhỏ nhất của các hàm số sau: a) (y = {x^3} - 12x + 1) trên đoạn [-1;3] b) (y = - {x^3} + 24{x^2} - 180x + 400) trên đoạn [3;11] c) (y = frac{{2x + 1}}{{x - 2}}) trên đoạn [3;7] d) (y = sin 2x) trên đoạn ([0;frac{{7pi }}{{12}}]) Quảng cáo
Đề bài Tìm giá trị lớn nhất, giá trị nhỏ nhất của các hàm số sau: Phương pháp giải - Xem chi tiết Tìm đạo hàm, lập bảng biến thiên và xác định giá trị lớn nhất, giá trị nhỏ nhất của hàm số Lời giải chi tiết a) Xét \(y = {x^3} - 12x + 1\) trên đoạn [-1;3] \(y' = 3{x^2} - 12 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 2\\x = - 2(loai)\end{array} \right.\) Bảng biến thiên: Từ bảng biến thiên, ta thấy \(\mathop {\max }\limits_{[ - 1;3]} y = y( - 1) = 12\) và \(\mathop {\min }\limits_{[ - 1;3]} y = y(2) = - 15\) b) Xét \(y = - {x^3} + 24{x^2} - 180x + 400\) trên đoạn [3;11] \(y' = - 3{x^2} + 48x - 180 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 10\\x = 6\end{array} \right.\) Bảng biến thiên: Từ bảng biến thiên, ta thấy \(\mathop {\max }\limits_{[3;11]} y = y(3) = 49\) và \(\mathop {\min }\limits_{[3;11]} y = y(6) = - 32\) c) Xét \(y = \frac{{2x + 1}}{{x - 2}}\) trên đoạn [3;7] \(y' = \frac{{ - 5}}{{{{(x - 2)}^2}}} < 0\forall x \in [3;7]\) Bảng biến thiên: Từ bảng biến thiên, ta thấy \(\mathop {\max }\limits_{[3;7]} y = y(3) = 7\) và \(\mathop {\min }\limits_{[3;7]} y = y(7) = 3\) d) Xét \(y = \sin 2x\) trên đoạn \([0;\frac{{7\pi }}{{12}}]\) \(y' = 2\cos 2x = 0 \Leftrightarrow 2x = \frac{\pi }{2} + k\pi \Leftrightarrow x = \frac{\pi }{4} + \frac{{k\pi }}{2}(k \in \mathbb{Z})\) Ta có: \(x \in [0;\frac{{7\pi }}{{12}}] \Rightarrow k = 0 \Rightarrow x = \frac{\pi }{4}\) Bảng biến thiên: Từ bảng biến thiên, ta thấy \(\mathop {\max }\limits_{[0;\frac{{7\pi }}{{12}}]} y = y(\frac{\pi }{4}) = 1\) và \(\mathop {\min }\limits_{[0;\frac{{7\pi }}{{12}}]} y = y(\frac{{7\pi }}{{12}}) = - \frac{1}{2}\)
Quảng cáo
|