1.Tính diện tích hình phẳng a) Diện tích hình phẳng giới hạn bởi đồ thị hàm số y = f(x), trục hoành và hai đường thẳng x = a, x = b
Xem chi tiếtTính diện tích hình phẳng giới hạn bởi a) Đồ thị của hàm số (y = {e^x}), trục hoành và hai đường thẳng (x = - 1), (x = 1). b) Đồ thị của hàm số (y = x + frac{1}{x}), trục hoành và hai đường thẳng (x = 1), (x = 2).
Xem chi tiếtTính diện tích hình phẳng giới hạn bởi đồ thị của hàm số (y = {x^3} - x), trục hoành và hai đường thẳng (x = 0), (x = 2).
Xem chi tiếtTính diện tích hình phẳng giới hạn bởi đồ thị của hai hàm số (y = frac{{{x^2} + 1}}{x}), (y = - x) và hai đường thẳng (x = 1), (x = 4).
Xem chi tiếtTính diện tích hình phẳng giới hạn bởi đồ thị của hai hàm số (y = {x^3} + 1), (y = 2) và hai đường thẳng (x = - 1), (x = 2).
Xem chi tiếtKhi cắt một vật thể hình chiếc nêm bởi mặt phẳng vuông góc với trục (Ox) tại điểm có hoành độ (x) (left( { - 2 le x le 2} right)), mặt cắt là tam giác vuông có một góc ({45^o}) và độ dài một cạnh góc vuông là (sqrt {4 - {x^2}} ) (dm). Tính thể tích của vật thể.
Xem chi tiếtCho (D) là hình phẳng giới hạn bởi đồ thị hàm số (y = sqrt {4 - x} ) (left( {x le 4} right)), trục tung và trục hoành (hình dưới đây). Tính thể tích khối tròn xoay tạo thành khi quay (D) quanh trục (Ox).
Xem chi tiếtTrong mặt phẳng toạ độ (Oxy), cho hình thang (OABC) có (Aleft( {0;1} right)), (Bleft( {2;2} right)) và (Cleft( {2;0} right)) (hình dưới đây). Tính thể tích khối tròn xoay tạo thành khi quay hình thang (OABC) quanh trục (Ox).
Xem chi tiết