Cho mặt phẳng \(\left( P \right):x + 2y + 3z - 1 = 0\). Vectơ nào dưới đây là một vectơ pháp tuyến của \(\left( P \right)\)? A. \(\overrightarrow {{n_1}} = \left( {1;3; - 1} \right)\) B. \(\overrightarrow {{n_2}} = \left( {2;3; - 1} \right)\) C. \(\overrightarrow {{n_3}} = \left( {1;2; - 1} \right)\) D. \(\overrightarrow {{n_4}} = \left( {1;2;3} \right)\)
Xem lời giảiPhương trình nào dưới đây là phương trình của mặt phẳng \(\left( {Oyz} \right)\)? A. \(y = 0\) B. \(x = 0\) C. \(y - z = 0\) D. \(z = 0\)
Xem lời giảiPhương trình nào dưới đây là phương trình mặt phẳng đi qua điểm \(M\left( {1;2; - 3} \right)\) và có vectơ pháp tuyến \(\vec n = \left( {1; - 2;3} \right)\)? A. \(x - 2y + 3z - 12 = 0\) B. \(x - 2y - 3z + 6 = 0\) C. \(x - 2y + 3z + 12 = 0\) D. \(x - 2y - 3z - 6 = 0\)
Xem lời giảiCho mặt phẳng \(\left( P \right):3x + 4y + 2z + 4 = 0\) và điểm \(A\left( {1; - 2;3} \right)\). Khoảng cách từ \(A\) đến \(\left( P \right)\) bằng A. \(\frac{5}{{\sqrt {29} }}\) B. \(\frac{5}{{29}}\) C. \(\frac{{\sqrt 5 }}{3}\) D. \(\frac{5}{9}\)
Xem lời giảiCho ba mặt phẳng \(\left( \alpha \right):x + y + 2z + 1 = 0\), \(\left( \beta \right):x + y - z + 2 = 0\) và \(\left( \gamma \right):x - y + 5 = 0\). Trong các mệnh đề sau, mệnh đề nào sai? A. \(\left( \alpha \right) \bot \left( \beta \right)\) B. \(\left( \gamma \right) \bot \left( \beta \right)\) C. \(\left( \alpha \right)\parallel \left( \beta \right)\) D. \(\left( \alpha \right) \bot \left( \gamma \right)\)
Xem lời giảiCho đường thẳng \(d:\frac{{x - 2}}{{ - 1}} = \frac{{y - 1}}{2} = \frac{{z + 3}}{1}\). Vectơ nào sau đây là một vectơ chỉ phương của \(d\)? A. \(\overrightarrow {{u_1}} = \left( {2;1; - 3} \right)\) B. \(\overrightarrow {{u_2}} = \left( { - 2; - 1;3} \right)\) C. \(\overrightarrow {{u_3}} = \left( { - 1;2;1} \right)\) D. \(\overrightarrow {{u_4}} = \left( { - 1;2; - 1} \right)\)
Xem lời giảiPhương trình nào dưới đây là phương trình chính tắc của đường thẳng \(d:\left\{ \begin{array}{l}x = 1 + 2t\\y = 3t\\z = - 2 + t\end{array} \right.\)? A. \(\frac{{x + 1}}{2} = \frac{y}{3} = \frac{{z - 2}}{1}\) B. \(\frac{{x - 1}}{2} = \frac{y}{3} = \frac{{z + 2}}{1}\) C. \(\frac{{x + 1}}{2} = \frac{y}{3} = \frac{{z - 2}}{{ - 2}}\) D. \(\frac{{x - 1}}{1} = \frac{y}{3} = \frac{{z + 2}}{{ - 2}}\)
Xem lời giảiCho đường thẳng \(d:\left\{ \begin{array}{l}x = - 1 + 2t\\y = - t\\z = - 2 - t\end{array} \right.\). Trong các đường thẳng sau, đường thẳng nào vuông góc với \(d\)? A. \({d_1}:\left\{ \begin{array}{l}x = 3t'\\y = 1 + t'\\z = 5t'\end{array} \right.\) B. \({d_2}:\left\{ \begin{array}{l}x = 2\\y = 2 + t'\\z = 1 + t'\end{array} \right.\) C. \({d_3}:\frac{{x - 2}}{3} = \frac{y}{2} = \frac{{z - 1}}{{ - 5}}\) D. \({d_4}:\frac{{x + 2}}{2} = \frac{y}{{ - 1}} = \frac{{z + 1}}{2}\)
Xem lời giảiCho hai mặt phẳng (left( P right):2x - y - z - 3 = 0) và (left( Q right):x - z - 2 = 0). Góc giữa hai mặt phẳng (left( P right)) và (left( Q right)) bằng A. ({30^o}) B. ({45^o}) C. ({60^o}) D. ({90^o})
Xem lời giảiCho mặt cầu \(\left( S \right):{\left( {x + 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 1} \right)^2} = 9\). Toạ độ tâm \(I\) và bán kính \(R\) của \(\left( S \right)\) là A. \(I\left( { - 1;2;1} \right)\) và \(R = 3\) B. \(I\left( {1; - 2; - 1} \right)\) và \(R = 3\) C. \(I\left( { - 1;2;1} \right)\) và \(R = 9\) D. \(I\left( {1; - 2; - 1} \right)\) và \(R = 9\)
Xem lời giải