1. Vecto pháp tuyến và cặp vecto chỉ phương của mặt phẳng Vecto pháp tuyến
Xem chi tiếta) Cho vectơ (vec n) khác (vec 0). Qua một điểm ({M_0}) cố định trong không gian, có bao nhiêu mặt phẳng (left( alpha right)) vuông góc với giá của vectơ (vec n)?
Xem lời giảiTrong không gian (Oxyz), cho mặt phẳng (left( alpha right)) có cặp vectơ chỉ phương (vec a = left( {{a_1};{a_2};{a_3}} right)), (vec b = left( {{b_1};{b_2};{b_3}} right)). Xét vectơ (vec n = left( {{a_2}{b_3} - {a_3}{b_2};{a_3}{b_1} - {a_1}{b_3};{a_1}{b_2} - {a_2}{b_1}} right)).
Xem lời giảiTrong không gian (Oxyz), cho mặt phẳng (left( alpha right)) đi qua điểm ({M_0}left( {1;2;3} right)) và nhận (vec n = left( {7;5;2} right)) làm vectơ pháp tuyến. Gọi (Mleft( {x;y;z} right)) là một điểm tuỳ ý trong không gian. Tính tích vô hướng (vec n.overrightarrow {{M_0}M} ) theo (x,y,z).
Xem lời giảiCho hai mặt phẳng \(\left( \alpha \right)\), \(\left( \beta \right)\) có phương trình là \(\left( \alpha \right):x - 2y + 3z + 1 = 0\) và \(\left( \beta \right):2x - 4y + 6z + 1 = 0\). a) Nêu nhận xét về các vectơ pháp tuyến của hai mặt phẳng trên. b) Cho điểm \(M\left( { - 1;0;0} \right)\). Hãy cho biết các mặt phẳng \(\left( \alpha \right)\), \(\left( \beta \right)\) có đi qua \(M\) không. c) Giải thích tại sao \(\left( \alpha \right)\) song song với \(\left( \beta \right)\).
Xem lời giảiTrong không gian \(Oxyz\), cho mặt phẳng \(\left( \alpha \right)\) có phương trình \(Ax + By + Cz + D = 0\) và điểm \({M_0}\left( {{x_0};{y_0};{z_0}} \right)\). Gọi \({M_1}\left( {{x_1};{y_1};{z_1}} \right)\) là hình chiếu vuông góc của \({M_0}\) trên \(\left( \alpha \right)\)(hình dưới đây).
Xem lời giảiViết phương trình của mặt phẳng: a) Đi qua điểm (Aleft( {2;0;0} right)) và nhận (vec n = left( {2;1; - 1} right)) làm vectơ pháp tuyến. b) Đi qua điểm (Bleft( {1;2;3} right)) và song song với giá của mỗi vectơ (vec u = left( {1;2;3} right)) và (vec v = left( { - 2;0;1} right)). c) Đi qua ba điểm (Aleft( {1;0;0} right)), (Bleft( {0;2;0} right)) và (Cleft( {0;0;4} right)).
Xem lời giảia) Lập phương trình của các mặt phẳng toạ độ \(\left( {Oxy} \right)\), \(\left( {Oyz} \right)\), \(\left( {Oxz} \right)\). b) Lập phương trình của các mặt phẳng đi qua điểm \(A\left( { - 1;9;8} \right)\) và lần lượt song song với các mặt phẳng toạ độ trên.
Xem lời giảiCho tứ diện (ABCD) có các đỉnh (Aleft( {4;0;2} right)), (Bleft( {0;5;1} right)), (Cleft( {4; - 1;3} right)), (Dleft( {3; - 1;5} right)). a) Hãy viết phương trình của các mặt phẳng (left( {ABC} right)) và (left( {ABD} right)). b) Hãy viết phương trình mặt phẳng (left( P right)) đi qua cạnh (BC) và song song với cạnh (AD).
Xem lời giảiViết phương trình mặt phẳng \(\left( Q \right)\) đi qua điểm \(C\left( {1; - 5;0} \right)\) và song song với mặt phẳng \(\left( P \right):3x - 5y + 4z - 2024 = 0.\)
Xem lời giải