Lý thuyết Phương trình mặt phẳng Toán 12 Chân trời sáng tạo

1. Vecto pháp tuyến và cặp vecto chỉ phương của mặt phẳng Vecto pháp tuyến

Quảng cáo

1. Vecto pháp tuyến và cặp vecto chỉ phương của mặt phẳng

Vecto pháp tuyến

Vecto \(\overrightarrow n  \ne \overrightarrow 0 \) được gọi là vecto pháp tuyến của mặt phẳng \(\left( \alpha  \right)\) nếu giá của \(\overrightarrow n \) vuông góc với \(\left( \alpha  \right)\).

Cặp vecto chỉ phương

Cho mặt phẳng \(\left( \alpha  \right)\). Nếu hai vecto \(\overrightarrow a ,\overrightarrow b \) không cùng phương, có giá song song hoặc nằm trong \(\left( \alpha  \right)\) thì \(\overrightarrow a ,\overrightarrow b \) được gọi là cặp vecto chỉ phương của \(\left( \alpha  \right)\).

Ví dụ: Cho hình lập phương ABCD.A’B’C’D’.

a) Tìm một cặp vecto chỉ phương của mặt phẳng (ABCD).

b) Tìm một cặp vecto pháp

tuyến của mặt phẳng (ABCD).

Giải:


a) Vì \(\overrightarrow {AB} \) và \(\overrightarrow {AD} \) không cùng phương và có giá nằm trong mặt phẳng (ABCD) nên \(\overrightarrow {AB} \), \(\overrightarrow {AD} \) là một cặp vecto pháp tuyến của (ABCD).

b) Vì \(AA'\)\( \bot \)(ABCD) nên \(\overrightarrow {AA'} \) là một vecto pháp tuyến của (ABCD).

2. Xác định vecto pháp tuyến của mặt phẳng khi biết cặp vecto chỉ phương

Trong không gian Oxyz, nếu mặt phẳng \(\left( \alpha  \right)\) nhận hai vecto \(\overrightarrow a  = ({a_1};{a_2};{a_3})\), \(\overrightarrow b  = ({b_1};{b_2};{b_3})\) làm cặp vecto chỉ phương thì \(\left( \alpha  \right)\) nhận vecto

\(\overrightarrow n  = ({a_2}{b_3} - {a_3}{b_2};{a_3}{b_1} - {a_1}{b_3};{a_1}{b_2} - {a_2}{b_1})\)

làm vecto pháp tuyến.


Vecto \(\overrightarrow n  = ({a_2}{b_3} - {a_3}{b_2};{a_3}{b_1} - {a_1}{b_3};{a_1}{b_2} - {a_2}{b_1})\) còn được gọi là tích có hướng của hai vecto \(\overrightarrow a  = ({a_1};{a_2};{a_3})\) và \(\overrightarrow b  = ({b_1};{b_2};{b_3})\), kí hiệu là \(\left[ {\overrightarrow a ,\overrightarrow b } \right]\).

Biểu thức \({a_1}{b_2} - {a_2}{b_1}\) thường được kí hiệu là \(\left| {\begin{array}{*{20}{c}}{{a_1}}&{{a_2}}\\{{b_1}}&{{b_2}}\end{array}} \right|\).

Nếu \(\overrightarrow a ,\overrightarrow b \) cùng phương \( \Leftrightarrow \left[ {\overrightarrow a ,\overrightarrow b } \right] = 0\).

Ví dụ: Cho mặt phẳng (P) nhận \(\overrightarrow a  = (1;2;3)\), \(\overrightarrow b  = (4;1;5)\) làm cặp vecto chỉ phương. Tìm một vecto pháp tuyến của (P).

Giải: Ta có tích có hướng của hai vecto \(\overrightarrow a \), \(\overrightarrow b \) là

\(\left[ {\overrightarrow a ,\overrightarrow b } \right] = (2.5 - 3.1;3.4 - 1.5;1.1 - 2.4) = (7;7; - 7)\).

Do đó, mặt phẳng (P) nhận \(\overrightarrow n  = \frac{1}{7}\left[ {\overrightarrow a ,\overrightarrow b } \right] = (1;1; - 1)\) làm một vecto pháp tuyến.

3. Phương trình tổng quát của mặt phẳng

Khái niệm phương trình tổng quát của mặt phẳng

Trong không gian Oxyz, mỗi mặt phẳng đều có phương trình dạng Ax + By + Cz + D = 0, trong đó A, B, C không đồng thời bằng 0, được gọi là phương trình tổng quát của mặt phẳng đó.

Mỗi phương trình Ax + By + Cz + D = 0 (A, B, C không đồng thời bằng 0) đều xác định một mặt phẳng nhận \(\overrightarrow n  = (A;B;C)\) làm vecto pháp tuyến.

Cho mặt phẳng có phương trình tổng quát là Ax + By + Cz + D = 0 . Khi đó \(N({x_0};{y_0};{z_0}) \in (\alpha ) \Leftrightarrow A{x_0} + B{y_0} + C{z_0} + D = 0\).

Ví dụ: Cho hai mặt phẳng (P), (Q) có phương trình tổng quát là

(P): \(3x - 5y + 7z = 0\) và (Q): \(x + y - 2 = 0\).

a) Tìm một vecto pháp tuyến của mỗi mặt phẳng (P), (Q).

b) Tìm điểm thuộc mặt phẳng (P) trong số các điểm A(1;3;1), B(1;2;3).

Giải:

a) Mặt phẳng (P) có một vecto pháp tuyến là \(\overrightarrow n  = (3; - 5;7)\).

Mặt phẳng (Q) có một vecto pháp tuyến là \(\overrightarrow n  = (1;1;0)\).

b) Thay tọa độ điểm A vào phương trình của (P), ta được: 3.1 – 5.3 + 7.1 + 5 = 0.

Vậy A thuộc (P).

Thay tọa độ điểm B vào phương trình của (P), ta được: 3.1 – 5.2 + 7.3 + 5 = 19 \( \ne 0\).

Vậy B không thuộc (P).

Lập phương trình tổng quát của mặt phẳng đi qua một điểm và biết vecto pháp tuyến

Trong không gian Oxyz, nếu mặt phẳng \(\left( \alpha  \right)\) đi qua điểm \({M_0}({x_0};{y_0};{z_0})\) và có vecto pháp tuyến \(\overrightarrow n  = (A;B;C)\) có phương trình là:

\(A(x - {x_0}) + B(y - {y_0}) + C(z - {z_0}) = 0 \Leftrightarrow Ax + By + Cz + D = 0\), với \(D =  - (A{x_0} + B{y_0} + C{z_0})\)

Ví dụ: Viết phương trình mặt phẳng (P) đi qua điểm M(1;2;3) và có vecto pháp tuyến \(\overrightarrow n  = (1;2;1)\).

Giải: Vì (P) đi qua điểm M(1;2;1) và có vecto pháp tuyến \(\overrightarrow n  = (1;2;1)\) nên phương trình của (P) là \(1\left( {x--1} \right) + 2\left( {y--2} \right) + 1\left( {z--3} \right) = 0 \Leftrightarrow x + 2y - 8 = 0\).

Lập phương trình mặt phẳng đi qua một điểm và biết cặp vecto chỉ phương

Trong không gian Oxyz, bài toán viết phương trình mặt phẳng đi qua điểm M và biết cặp vecto chỉ phương \(\overrightarrow u \), \(\overrightarrow v \) có thể thực hiện theo các bước sau:

- Tìm vecto pháp tuyến \(\overrightarrow n  = \left[ {\overrightarrow u ,\overrightarrow v } \right]\).

- Lập phương trình tổng quát của mặt phẳng đi qua M và biết vecto pháp tuyến \(\overrightarrow n \).

Ví dụ: Viết phương trình mặt phẳng (P) đi qua điểm N(4;0;1) và có cặp vecto chỉ phương là \(\overrightarrow a  = (1;2;1)\), \(\overrightarrow b  = (2;1;3)\).

Giải: (P) có cặp vecto chỉ phương là \(\overrightarrow a  = (1;2;1)\), \(\overrightarrow b  = (2;1;3)\), suy ra (P) có vecto pháp tuyến là \(\overrightarrow n  = \left[ {\overrightarrow a ,\overrightarrow b } \right] = (2.3 - 1.1;1.2 - 1.3;1.1 - 2.2) = (5; - 1; - 3)\).

Phương trình của (P) là \(5(x - 4) - 1(y - 0) - 3(z - 1) = 0 \Leftrightarrow 5x - y - 3z - 17 = 0\).

Lập phương trình mặt phẳng đi qua ba điểm không thẳng hàng

Trong không gian Oxyz, bài toán viết phương trình mặt phẳng đi qua ba điểm không thẳng hàng A, B, C có thể thực hiện theo các bước sau:

- Tìm cặp vecto chỉ phương \(\overrightarrow {AB} ,\overrightarrow {AC} \).

- Tìm vecto pháp tuyến \(\overrightarrow n  = \left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right]\).

- Lập phương trình tổng quát của mặt phẳng đi qua A và biết vecto pháp tuyến \(\overrightarrow n \).

Ví dụ: Viết phương trình mặt phẳng (P) đi qua ba điểm A(1;1;1), B(1;2;2), C(4;1;0).

Giải: (P) đi qua ba điểm A(1;1;1), B(1;2;2), C(4;1;0) nên có cặp vecto chỉ phương là \(\overrightarrow {AB}  = (0;1;1)\), \(\overrightarrow {AC}  = (3;0; - 1)\), suy ra (P) có vecto pháp tuyến là

\(\overrightarrow n  = \left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right] = (1.( - 1) - 1.0;1.3 - 0.( - 1);0.0 - 1.3) = ( - 1;3; - 3)\).

Phương trình của (P) là \( - 1(x - 1) + 3(y - 1) - 3(z - 1) = 0 \Leftrightarrow x - 3y + 3z = 0\).

Phương trình mặt phẳng theo đoạn chắn

Phương trình mặt phẳng cắt ba trục tọa độ tại ba điểm A(a;0;0), B(0;b;0), C(0;0;c) với a, b, c \( \ne \) 0 có dạng \(\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1\) gọi là phương trình mặt phẳng theo đoạn chắn.

4. Điều kiện để hai mặt phẳng song song, vuông góc

Điều kiện để hai mặt phẳng song song

Trong không gian Oxyz, cho hai mặt phẳng:

\(\left( \alpha  \right):Ax + By + Cz + D = 0,\left( \beta  \right):A'x + B'y + C'z + D' = 0,\) với hai vecto pháp tuyến \(\overrightarrow n  = (A;B;C)\), \(\overrightarrow {n'}  = (A';B';C')\) tương ứng. Khi đó:

\(\left( \alpha  \right)//\left( \beta  \right) \Leftrightarrow \left\{ \begin{array}{l}\overrightarrow {n'}  = k\overrightarrow n \\D' \ne kD\end{array} \right.\) với k nào đó.

Ví dụ: Mặt phẳng (P): \(4x + 3y + z + 5 = 0\) song song với mặt phẳng nào sau đây?

a) (Q): \(8x + 6y + 2z + 9 = 0\);

b) (R): \(8x + 6y + 2z + 10 = 0\);

c) (S): \(4x + 2y + z + 5 = 0\).

Giải: Các mặt phẳng (P), (Q), (R), (S) có các vecto pháp tuyến lần lượt là \(\overrightarrow {{n_1}}  = (4;3;1)\), \(\overrightarrow {{n_2}}  = (8;6;2)\), \(\overrightarrow {{n_3}}  = (8;6;2)\), \(\overrightarrow {{n_4}}  = (4;2;1)\).

a) Ta có \(\overrightarrow {{n_2}}  = 2\overrightarrow {{n_1}} \), \(9 \ne 2.5\). Vậy (P)//(Q).

b) Ta có \(\overrightarrow {{n_3}}  = 2\overrightarrow {{n_1}} \), \(10 \ne 2.5\). Vậy (P)\( \equiv \)(R).

c) Ta có \(\frac{4}{3} \ne \frac{3}{2}\) suy ra \(\overrightarrow {{n_1}} \) và \(\overrightarrow {{n_4}} \) không cùng phương. Vậy (P) cắt (S).

Điều kiện để hai mặt phẳng vuông góc

Trong không gian Oxyz, cho hai mặt phẳng:

\(\left( \alpha  \right):Ax + By + Cz + D = 0,\left( \beta  \right):A'x + B'y + C'z + D' = 0,\) với hai vecto pháp tuyến \(\overrightarrow n  = (A;B;C)\), \(\overrightarrow {n'}  = (A';B';C')\) tương ứng. Khi đó:

\(\left( \alpha  \right) \bot \left( \beta  \right) \Leftrightarrow \overrightarrow n  \bot \overrightarrow {n'}  \Leftrightarrow AA' + BB' + CC' = 0\)

Ví dụ: Cho ba mặt phẳng (P), (Q), (R) có phương trình là

(P): \(x - 4y + 3z + 2 = 0\), (Q): \(4x + y + 88 = 0\), (R): \(x + y + z + 9 = 0\). Chứng minh rằng (P) ⊥ (Q), (P) ⊥ (R).

Giải: Các mặt phẳng (P), (Q), (R) có vecto pháp tuyến lần lượt là \(\overrightarrow {{n_1}}  = (1; - 4;3)\), \(\overrightarrow {{n_2}}  = (4;1;0)\), \(\overrightarrow {{n_3}}  = (1;1;1)\).

Ta có \(\overrightarrow {{n_1}} .\overrightarrow {{n_2}}  = 1.4 + ( - 4).1 + 3.0 = 0\). Vậy (P) ⊥ (Q).

Ta có \(\overrightarrow {{n_1}} .\overrightarrow {{n_3}}  = 1.1 + ( - 4).1 + 3.1 = 0\). Vậy (P) ⊥ (R).

5. Khoảng cách từ một điểm đến một mặt phẳng

Trong không gian Oxyz, khoảng cách từ điểm \({M_0}({x_0};{y_0};{z_0})\) đến mặt phẳng (P): Ax + By + Cz + D = 0 là:

\(d(M,(P)) = \frac{{\left| {A{x_0}{\rm{ }} + {\rm{ }}B{y_0}{\rm{ }} + {\rm{ }}C{z_0}{\rm{ }} + {\rm{ }}D} \right|}}{{\sqrt {{A^2} + {B^2} + {C^2}} }}\)



 Ví dụ: Tìm khoảng cách từ điểm M(1;2;3) đến mặt phẳng (P): \(x + y + z + 12 = 0\).

Giải: \(d\left( {M,(P)} \right) = \frac{{\left| {1.1 + 1.2 + 1.3 + 12} \right|}}{{\sqrt {{1^2} + {1^2} + {1^2}} }} = \frac{{18}}{{\sqrt 3 }} = 6\sqrt 3 \).

  • Giải mục 1 trang 32, 33 SGK Toán 12 tập 2 - Chân trời sáng tạo

    a) Cho vectơ (vec n) khác (vec 0). Qua một điểm ({M_0}) cố định trong không gian, có bao nhiêu mặt phẳng (left( alpha right)) vuông góc với giá của vectơ (vec n)?

  • Giải mục 2 trang 33, 34 SGK Toán 12 tập 2 - Chân trời sáng tạo

    Trong không gian (Oxyz), cho mặt phẳng (left( alpha right)) có cặp vectơ chỉ phương (vec a = left( {{a_1};{a_2};{a_3}} right)), (vec b = left( {{b_1};{b_2};{b_3}} right)). Xét vectơ (vec n = left( {{a_2}{b_3} - {a_3}{b_2};{a_3}{b_1} - {a_1}{b_3};{a_1}{b_2} - {a_2}{b_1}} right)).

  • Giải mục 3 trang 35, 36, 37, 38 SGK Toán 12 tập 2 - Chân trời sáng tạo

    Trong không gian (Oxyz), cho mặt phẳng (left( alpha right)) đi qua điểm ({M_0}left( {1;2;3} right)) và nhận (vec n = left( {7;5;2} right)) làm vectơ pháp tuyến. Gọi (Mleft( {x;y;z} right)) là một điểm tuỳ ý trong không gian. Tính tích vô hướng (vec n.overrightarrow {{M_0}M} ) theo (x,y,z).

  • Giải mục 4 trang 38, 39, 40 SGK Toán 12 tập 2 - Chân trời sáng tạo

    Cho hai mặt phẳng \(\left( \alpha \right)\), \(\left( \beta \right)\) có phương trình là \(\left( \alpha \right):x - 2y + 3z + 1 = 0\) và \(\left( \beta \right):2x - 4y + 6z + 1 = 0\). a) Nêu nhận xét về các vectơ pháp tuyến của hai mặt phẳng trên. b) Cho điểm \(M\left( { - 1;0;0} \right)\). Hãy cho biết các mặt phẳng \(\left( \alpha \right)\), \(\left( \beta \right)\) có đi qua \(M\) không. c) Giải thích tại sao \(\left( \alpha \right)\) song song với \(\left( \beta \right)\).

  • Giải mục 5 trang 41, 42 SGK Toán 12 tập 2 - Chân trời sáng tạo

    Trong không gian \(Oxyz\), cho mặt phẳng \(\left( \alpha \right)\) có phương trình \(Ax + By + Cz + D = 0\) và điểm \({M_0}\left( {{x_0};{y_0};{z_0}} \right)\). Gọi \({M_1}\left( {{x_1};{y_1};{z_1}} \right)\) là hình chiếu vuông góc của \({M_0}\) trên \(\left( \alpha \right)\)(hình dưới đây).

Quảng cáo

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close