1. Phương trình mặt cầu trong không gian Khái niệm mặt cầu Trong không gian, cho điểm I và số dương R. Mặt cầu tâm I, bán kính R, kí hiệu S(I;R) là tập hợp các điểm M trong không gian thỏa mãn IM = R. Đoạn thẳng nối hai điểm thuộc mặt cầu và đi qua tâm I là đường kính mặt cầu.
Xem chi tiếtTrong không gian (Oxyz), cho mặt cầu (Sleft( {I;R} right)) có tâm (Ileft( {a;b;c} right)) và bán kính (R). Xét một điểm (Mleft( {x;y;z} right)) thay đổi. a) Tính khoảng cách (IM) theo (x), (y), (z) và (a), (b), (c). b) Nêu điều kiện cần và đủ của (x), (y), (z) để điểm (Mleft( {x;y;z} right)) nằm trên mặt cầu (Sleft( {I;R} right)).
Xem lời giảiBề mặt của một bóng thám không dạng hình cầu có phương trình ({x^2} + {y^2} + {z^2} - 200x - 600y - {rm{4 000}}z + {rm{4 099 900}} = 0). Tìm toạ độ tâm và bán kính mặt cầu.
Xem lời giảiViết phương trình mặt cầu (left( S right)): a) Có tâm (Ileft( {7; - 3;0} right)), bán kính (R = 8). b) Có tâm (Mleft( {3;1; - 4} right)) và đi qua điểm (Nleft( {1;0;1} right)). c) Có đường kính (AB) với (Aleft( {4;6;8} right)) và (Bleft( {2;4;4} right)).
Xem lời giảiTrong các phương trình sau, phương trình nào là phương trình mặt cầu? Xác định tâm và bán kính của mặt cầu đó. a) ({x^2} + {y^2} + {z^2} + 5x - 7y + z - 1 = 0). b) ({x^2} + {y^2} + {z^2} + 4x + 6y - 2z + 100 = 0). c) ({x^2} + {y^2} + {z^2} - x - y - z + frac{1}{2} = 0).
Xem lời giảiCho hai điểm (Aleft( {1;0;0} right)) và (Bleft( {5;0;0} right)). Chứng minh rằng nếu điểm (Mleft( {x;y;z} right)) thoả mãn (overrightarrow {MA} .overrightarrow {MB} = 0) thì (M) thuộc một mặt cầu (left( S right)). Tìm tâm và bán kính của (left( S right)).
Xem lời giảiPhần mềm mô phỏng thiết bị thám hiẻm đại dương có dạng hình cầu trong không gian (Oxyz). Cho biết toạ độ tâm mặt cầu là (Ileft( {360;200;400} right)) và bán kính (r = 2{rm{ m}}). Viết phương trình mặt cầu.
Xem lời giảiNgười ta muốn thiết kế một bồn chứa khí hoá lỏng hình cầu bằng phần mềm 3D. Cho biết phương trình bề mặt của bồn chứa là (left( S right):{left( {x - 6} right)^2} + {left( {y - 6} right)^2} + {left( {z - 6} right)^2} = 25). Phương trình mặt phẳng chứa nắp là (left( P right):z = 10). a) Tìm tâm và bán kính của bồn chứa. b) Tính khoảng cách từ tâm bồn chứa đến mặt phẳng của nắp.
Xem lời giải