Giải bài 7.16 trang 47 SGK Toán 10 – Kết nối tri thứcTrong mặt phẳng toạ độ, cho tam giác ABC, với A(6; -2), B(4; 2), C(5; -5). Viết phương trình đường tròn ngoại tiếp tam giác đó. Quảng cáo
Đề bài Trong mặt phẳng toạ độ, cho tam giác ABC, với A(6; -2), B(4; 2), C(5; -5). Viết phương trình đường tròn ngoại tiếp tam giác đó. Lời giải chi tiết Giả sử tâm đường tròn là điểm \(I\left( {a;b} \right)\). Ta có: \(IA = IB = IC \Leftrightarrow I{A^2} = I{B^2} = I{C^2}\) Vì \(I{A^2} = I{B^2},I{B^2} = I{C^2}\) nên: \(\left\{ \begin{array}{l}{\left( {6 - a} \right)^2} + {\left( { - 2 - b} \right)^2} = {\left( {4 - a} \right)^2} + {\left( {2 - b} \right)^2}\\{\left( {4 - a} \right)^2} + {\left( {2 - b} \right)^2} = {\left( {5 - a} \right)^2} + {\left( { - 5 - b} \right)^2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 1\\b = - 2\end{array} \right.\) Vậy \(I\left( {1; - 2} \right)\) và \(R = IA = \sqrt {{{\left( {1 - 6} \right)}^2} + {{\left( { - 2 + 2} \right)}^2}} = 5\) Vậy phương trình đường tròn đi qua 3 điểm A,B, C là: \({\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} = 25\) Cách 2: Gọi phương trình đường tròn cần tìm là (C):\({x^2} + {y^2} + 2ax + 2by + c = 0\) \(\left( {{a^2} + {b^2} - c > 0} \right)\) \(A(6; -2), B(4; 2), C(5; -5)\) thuộc (C) nên ta có: \(\left\{ {\begin{array}{*{20}{l}} Vậy phương trình đường tròn đi qua 3 điểm A, B, C là: \({x^2} + {y^2} - 2x + 4y -20 = 0\) hay \({\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} = 25\)
Quảng cáo
|