Bài 6.42 trang 191 SBT đại số 10

Giải bài 6.42 trang 191 sách bài tập đại số 10. Trong các đẳng thức sau, đẳng thức nào đúng, đẳng thức nào sai?

Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn

Trong các đẳng thức sau, đẳng thức nào đúng, đẳng thức nào sai?

LG a

\(\sin (x + \dfrac{\pi }{2}) = \cos x\);

Lời giải chi tiết:

Đúng vì:

\(\begin{array}{l}
\sin \left( {x + \dfrac{\pi }{2}} \right) = \sin \left[ {\pi - \left( {\dfrac{\pi }{2} - x} \right)} \right]\\
= \sin \left( {\dfrac{\pi }{2} - x} \right) = \cos x
\end{array}\)

LG b

\(\cos(x + \dfrac{\pi }{2}) = \sin x\);

Lời giải chi tiết:

Sai vì:

\(\begin{array}{l}
\cos \left( {x + \dfrac{\pi }{2}} \right) = \cos \left[ {\pi - \left( {\dfrac{\pi }{2} - x} \right)} \right]\\
= - \cos \left( {\dfrac{\pi }{2} - x} \right) = - \sin x
\end{array}\)

LG c

 \(\sin (x - \pi ) = \sin x\);

Lời giải chi tiết:

Sai vì:

\(\begin{array}{l}
\sin \left( {x - \pi } \right) = \sin \left[ { - \left( {\pi - x} \right)} \right]\\
= - \sin \left( {\pi - x} \right) = - \sin x
\end{array}\)

LG d

\(\cos(x - \pi ) = \cos x\).

Lời giải chi tiết:

Sai vì:

\( \begin{array}{l}
\cos \left( {x - \pi } \right) = \cos \left[ { - \left( {\pi - x} \right)} \right]\\
= \cos \left( {\pi - x} \right) = - \cos x
\end{array}\) 

Loigiaihay.com

Quảng cáo

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close