Bài 4.22 trang 108 SBT đại số 10

Giải bài 4.22 trang 108 sách bài tập đại số 10. Viết điều kiện của mỗi bất phương trình...

Quảng cáo

Đề bài

Viết điều kiện của mỗi bất phương trình đã cho sau đây rồi cho biết các bất phương trình này có tương đương đương với nhau hay không:

\(\sqrt {(x - 1)(x - 2)}  \ge x\)(1) và \(\sqrt {x - 1} .\sqrt {x - 2}  \ge x(2)\).

Phương pháp giải - Xem chi tiết

Biểu thức \(\dfrac{1}{{P(x)}}\) xác định khi \(P(x) \ne 0\)

Biểu thức \(\sqrt {P(x)} \) xác định khi \(P(x) \ge 0\)

Lời giải chi tiết

Điều kiện của (1) là \((x - 1)(x - 2) \ge 0\) \( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\left\{ {\begin{array}{*{20}{c}}{x - 1 \ge 0}\\{x - 2 \ge 0}\end{array}} \right.}\\{\left\{ {\begin{array}{*{20}{c}}{x - 1 \le 0}\\{x - 2 \le 0}\end{array}} \right.}\end{array}} \right.\) \( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x \ge 2}\\{x \le 1}\end{array}} \right.\)

Điều kiện của (2) là \(\left\{ \begin{array}{l}x - 1 \ge 0\\x - 2 \ge 0\end{array} \right.\) \( \Leftrightarrow x \ge 2\)

Hai bất phương trình đã cho không tương đương với nhau vì có \(x =  - 1\)là một nghiệm của (1) nhưng không là nghiệm của (2).

Nhận xét: Phép biến đổi đồng nhất\(\sqrt a .\sqrt b  = \sqrt {ab} \)làm mở rộng tập xác định, dẫn tới thay đổi điều kiện của phương trình, do đó có thể làm xuất hiện nghiệm ngoại lai.

Loigiaihay.com

Quảng cáo

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close