Bài 3.14 trang 148 SBT hình học 10Giải bài 3.14 trang 148 sách bài tập hình học 10. Viết phương trình đường thẳng... Quảng cáo
Đề bài Viết phương trình đường thẳng đi qua điểm \(M(2;5)\) và cách đều hai điểm \(A(-1;2)\) và \(B(5;4)\). Lời giải chi tiết Gọi đường thẳng \(d\) cần tìm có phương trình dạng \(ax + by + c = 0\). \(d\) đi qua \(M\left( {2;5} \right)\) nên \(2a + 5b + c = 0\) \( \Leftrightarrow c = - 2a - 5b\). Khi đó \(d:ax + by - 2a - 5b = 0\). \(d\left( {A,d} \right) = d\left( {B,d} \right)\) \( \Leftrightarrow \dfrac{{\left| { - a + 2b - 2a - 5b} \right|}}{{\sqrt {{a^2} + {b^2}} }} = \dfrac{{\left| {5a + 4b - 2a - 5b} \right|}}{{\sqrt {{a^2} + {b^2}} }}\) \( \Leftrightarrow \left| { - 3a - 3b} \right| = \left| {3a - b} \right|\) \( \Leftrightarrow \left[ \begin{array}{l} - 3a - 3b = 3a - b\\ - 3a - 3b = - \left( {3a - b} \right)\end{array} \right.\) \( \Leftrightarrow \left[ \begin{array}{l}6a = - 2b\\b = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}3a = - b\\b = 0\end{array} \right.\) TH1: \(3a = - b\), chọn \(a = 1 \Rightarrow b = - 3\) ta có phương trình \(x - 3y + 13 = 0\). TH2: \(b = 0\), chọn \(a = 1\) ta được phương trình \(x - 2 = 0\). Vậy \({d_1}:x - 3y + 13 = 0\), \({d_2}:x - 2 = 0\).
Loigiaihay.com
Quảng cáo
|