Bài 2.97 trang 110 SBT hình học 10

Giải bài 2.97 trang 110 sách bài tập hình học 10. Trong mặt phẳng Oxy...

Quảng cáo

Đề bài

Trong mặt phẳng \(Oxy\) cho ba điểm \(A\left( { - 1;1} \right),B\left( {2;4} \right),C\left( {6;0} \right)\). Khẳng định nào sau đây đúng?

A. Tam giác \(ABC\) có ba góc nhọn.

B. Tam giác \(ABC\) có một góc vuông.

C. Tam giác \(ABC\) có một góc tù.

D. Tam giác \(ABC\) đều.

Phương pháp giải - Xem chi tiết

Tính cosin các góc của tam giác \(ABC\) và nhận xét.

Lời giải chi tiết

Ta có: \(\overrightarrow {AB}  = \left( {3;3} \right),\overrightarrow {AC}  = \left( {7; - 1} \right)\), \(\overrightarrow {BC}  = \left( {4; - 4} \right)\)

Dễ thấy \(\overrightarrow {AB} .\overrightarrow {BC}  = 3.4 + 3.\left( { - 4} \right) = 0\) nên \(AB \bot BC\).

Vậy tam giác \(ABC\) có một góc vuông.

Cách khác:

\(\begin{array}{l}
AB = \sqrt {{3^2} + {3^2}} = \sqrt {18} \\
AC = \sqrt {{7^2} + {{\left( { - 1} \right)}^2}} = \sqrt {50} \\
BC = \sqrt {{4^2} + {{\left( { - 4} \right)}^2}} = \sqrt {32} \\
A{B^2} + B{C^2} = 18 + 32 = 50\\
A{C^2} = 50\\
\Rightarrow A{B^2} + B{C^2} = A{C^2}
\end{array}\)

Vậy tam giác \(ABC\) có một góc vuông.

Chọn B.

Loigiaihay.com

Quảng cáo

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close