Bài 2.20 trang 92 SBT hình học 10

Giải bài 2.20 trang 92 sách bài tập hình học 10. Cho tam giác ABC. Gọi H là trực tâm của tam giác và M là trung điểm của cạnh BC...

Quảng cáo

Đề bài

Cho tam giác ABC. Gọi H là trực tâm của tam giác và M là trung điểm của cạnh BC. Chứng minh rằng \(\overrightarrow {MH} .\overrightarrow {MA}  = \dfrac{1}{4}B{C^2}\).

Phương pháp giải - Xem chi tiết

Xen điểm thích hợp, tính tích vô hướng, chú ý các cặp véc tơ vuông góc có tích vô hướng bằng \(0\).

Lời giải chi tiết

Ta có \(\overrightarrow {AM}  = \dfrac{1}{2}\left( {\overrightarrow {AB}  + \overrightarrow {AC} } \right)\), \(\overrightarrow {HM}  = \dfrac{1}{2}(\overrightarrow {HB}  + \overrightarrow {HC} )\)

\( \Rightarrow \overrightarrow {AM} .\overrightarrow {HM}  = \dfrac{1}{4}\left( {\overrightarrow {AB}  + \overrightarrow {AC} } \right).\left( {\overrightarrow {HB}  + \overrightarrow {HC} } \right)\)

\( = \dfrac{1}{4}\left( {\overrightarrow {AB} .\overrightarrow {HB}  + \underbrace {\overrightarrow {AB} .\overrightarrow {HC} }_{ = 0} + \underbrace {\overrightarrow {AC} \overrightarrow {.HB} }_{ = 0} + \overrightarrow {AC} .\overrightarrow {HC} } \right)\)

\( = \dfrac{1}{4}(\overrightarrow {AB} .\overrightarrow {HB}  + \overrightarrow {AC} .\overrightarrow {HC} )\)

\( = \dfrac{1}{4}\left[ {\overrightarrow {AB} .(\overrightarrow {HC}  + \overrightarrow {CB} ) + \overrightarrow {AC} .(\overrightarrow {HB}  + \overrightarrow {BC} )} \right]\)

\( = \dfrac{1}{4}\left[ {\underbrace {\overrightarrow {AB} .\overrightarrow {HC} }_0 + \overrightarrow {AB} .\overrightarrow {CB}  + \underbrace {\overrightarrow {AC} .\overrightarrow {HB} }_0 + \overrightarrow {AC} .\overrightarrow {BC} } \right]\)

\( = \dfrac{1}{4}\left( {\overrightarrow {AB} .\overrightarrow {CB}  + \overrightarrow {AC} .\overrightarrow {BC} } \right)\)\( = \dfrac{1}{4}\left( {\overrightarrow {AB} .\overrightarrow {CB}  - \overrightarrow {AC} .\overrightarrow {CB} } \right)\)

\( = \dfrac{1}{4}\overrightarrow {CB} .\left( {\overrightarrow {AB}  - \overrightarrow {AC} } \right)\)\( = \dfrac{1}{4}\overrightarrow {CB} .\overrightarrow {CB}  = \dfrac{1}{4}{\overrightarrow {CB} ^2} = \dfrac{1}{4}{\overrightarrow {BC} ^2}\)

Loigiaihay.com

Quảng cáo

Gửi bài