Bài 2.16 trang 71 SBT hình học 11

Giải bài 2.16 trang 71 sách bài tập hình học 11. Cho tứ diện ABCD. Gọi G1 và G2 lần lượt là trọng tâm của tam giác ACD và BCD. Chứng minh rằng G1G2 song song với các mặt phẳng (ABC) và (ABD).

Quảng cáo

Đề bài

Cho tứ diện \(ABCD\). Gọi \(G_1\) và \(G_2\) lần lượt là trọng tâm của tam giác \(ACD\) và \(BCD\). Chứng minh rằng \(G_1G_2\) song song với các mặt phẳng \((ABC)\) và \((ABD)\).

Phương pháp giải - Xem chi tiết

Sử dụng định lý Talet.

Chứng minh đường thẳng \(d\parallel (P)\) ta chứng minh đường thẳng \(d\parallel d’\), trong đó \(d’\in (P)\).

Lời giải chi tiết

Gọi \(I\) là trung điểm \(CD\)

Ta có \(G_1\) là trọng tâm tam giác \(ACD\) nên ta có \(\dfrac{IG_1}{IA}=\dfrac{1}{3}\)

Và \(G_2\) là trọng tâm tam giác \(BCD\) nên ta có \(\dfrac{IG_2}{IB}=\dfrac{1}{3}\).

Khi đó \(\dfrac{IG_1}{IA}=\dfrac{IG_2}{IB}=\dfrac{1}{3}\)

Theo Talet ta được \(G_1G_2\parallel AB\).

Do \(\left\{ \begin{array}{l}{G_1}{G_2}\parallel AB\\AB \subset (ABC)\end{array} \right.\)

\(\Rightarrow G_1G_2\parallel (ABC)\).

Do \(\left\{ \begin{array}{l}{G_1}{G_2}\parallel AB\\AB \subset (ABD)\end{array} \right.\)

\(\Rightarrow G_1G_2\parallel (ABD)\).

Loigiaihay.com

Quảng cáo

Gửi bài