Bài 2.1 phần bài tập bổ sung trang 159 SBT toán 9 tập 1

Giải bài 2.1 phần bài tập bổ sung trang 159 sách bài tập toán 9. Độ dài cạnh của tam giác đều nội tiếp đường tròn (O; R) bằng:

Quảng cáo

Đề bài

Độ dài cạnh của tam giác đều nội tiếp đường tròn \((O; R)\) bằng: 

(A) \(\dfrac{R}{2}\) ;                      (B) \(\dfrac{{R\sqrt 3 }}{ 2}\) ;

(C) \(R\sqrt 3 \) ;                   (D) Một đáp số khác.

Hãy chọn phương án đúng.

Phương pháp giải - Xem chi tiết

Các tính chất trong tam giác đều:

+ Các góc trong tam giác bằng \(60^\circ \).

+ Tâm đường tròn ngoại tiếp trùng với tâm đường tròn nội tiếp (giao của ba đường phân giác, giao ba đường trung tuyến).

Lời giải chi tiết

Tam giác \(ABC\) đều có O là tâm đường tròn ngoại tiếp nên tia \(OB\) là tia phân giác góc \(ABH\), suy ra \(\widehat {OBH} = 30^\circ \). Kéo dài AO cắt BC tại H thì \(AH\bot BC\) (do tam giác ABC đều)

Xét tam giác \(OBH\) vuông tại H, có: 

\(BH = OB.c{\rm{os30}}^\circ {\rm{ = }}\dfrac{{\sqrt 3 }}{2}R\)

Mà H là trung điểm của BC (do tam giác ABC đều nên AH vừa là đường cao, vừa là đường trung tuyến)

Vậy \(CB = 2.BH = 2.\dfrac{{\sqrt 3 }}{2}R = \sqrt 3 R\)

Vậy đáp án là (C).

Loigiaihay.com

Quảng cáo

Gửi bài