Bài 1.57 trang 41 SBT đại số và giải tích 11

Giải bài 1.57 trang 41 sách bài tập đại số và giải tích 11. Nghiệm của phương trình 3(cos...

Quảng cáo

➡ Góp ý Loigiaihay.com, nhận quà liền tay! Góp ý ngay!💘

Đề bài

Nghiệm của phương trình \(3(\cos x-\sin x)-\sin x\cos x=-3\) là

A. \(\dfrac{\pi}{2}+k2\pi\) và \(\pi+k2\pi\), \(k\in\mathbb{Z}\)

B. \(\pi+k2\pi\), \(k\in\mathbb{Z}\)

C. \(\dfrac{\pi}{4}+k2\pi, k\in\mathbb{Z}\)

D. \(\dfrac{\pi}{6}+k\pi, k\in\mathbb{Z}\).

Phương pháp giải - Xem chi tiết

Đặt \(t=\cos x-\sin x\)

\(=\sqrt{2}\cos\left({x+\dfrac{\pi}{4}}\right)\) nên \(-\sqrt{2}\le t\le \sqrt{2}\)

Khi đó \(t^2={\cos}^2 x-2\cos x\sin x+{\sin}^2 x\)

\(=1-2\cos x\sin x\) từ đó rút được \(\sin x\cos x\) theo t

giải phương trình dạng \(a\sin x+b\cos x=c\)

Ta chia hai vế phương trình cho \(\sqrt{a^2+b^2}\).

Tùy và từng bài mà ta đặt \(\sin \alpha=\dfrac{a}{\sqrt{a^2+b^2}}\) và \(\cos \alpha=\dfrac{b}{\sqrt{a^2+b^2}}\) hay \(\cos \alpha=\dfrac{a}{\sqrt{a^2+b^2}}\) và \(\sin \alpha=\dfrac{b}{\sqrt{a^2+b^2}}\).

Sau đó tùy từng dạng phương trình thu được mà ta đưa về dạng \(\cos\) của một tổng hoặc \(\cos\) của một hiệu hoặc \(\sin\) của một tổng \(\sin\) của một hiệu.

Lời giải chi tiết

Đặt \(t=\cos x-\sin x\)

\(\cos x-\sin x=\sqrt{2}\cos\left({x+\dfrac{\pi}{4}}\right)\)

Do \(-1\le\cos\left({x+\dfrac{\pi}{4}}\right)\le 1\) nên \(-\sqrt{2}\le\sqrt{2}\cos\left({x+\dfrac{\pi}{4}}\right)\le \sqrt{2}\)

Khi đó \(-\sqrt{2}\le t\le \sqrt{2}\)

Ta có \(t^2={\cos}^2 x-2\cos x\sin x+{\sin}^2 x\)

\(=1-2\cos x\sin x\)

Suy ra \(\sin x\cos x=\dfrac{1-t^2}{2}\) thay vào phương trình ta được

\(3t-\dfrac{1-t^2}{2}=-3\)

\(\Leftrightarrow 6t-1+t^2=-6\)

\(\Leftrightarrow t^2+6t+5=0\)

\( \Leftrightarrow \left[ \begin{array}{l} t=-5<-\sqrt{2}\text{(loại)}\\ t =-1\end{array} \right.\)

Với \(t=-1\Leftrightarrow \cos x-\sin x=-1\)

\(\Leftrightarrow \sqrt{2}\cos(\dfrac{\pi}{4}+x)=-1\)

\(\Leftrightarrow \cos(\dfrac{\pi}{4}+x)=\cos\dfrac{3\pi}{4}\)

\(\Leftrightarrow \dfrac{\pi}{4}+x=\pm\dfrac{3\pi}{4}+k2\pi,k\in\mathbb{Z}\)

\( \Leftrightarrow \left[ \begin{array}{l} x =\dfrac{\pi}{2}+k2\pi,k\in\mathbb{Z}\\ x=-\pi+k2\pi,k\in\mathbb{Z}\end{array} \right.\)

Vậy phương trình có nghiệm là \( x=k2\pi,k\in\mathbb{Z}\) và \( x =-\pi+k2\pi=\pi+l2\pi,k,l\in\mathbb{Z} \)

Đáp án: A.

 Loigiaihay.com

Quảng cáo

Gửi bài tập - Có ngay lời giải