Bài 1.56 trang 41 SBT đại số và giải tích 11

Giải bài 1.56 trang 41 sách bài tập đại số và giải tích 11. Nghiệm dương nhỏ nhất của phương trình sin2x...

Quảng cáo

Đề bài

Nghiệm dương nhỏ nhất của phương trình \(\sqrt{3}\tan x+\sqrt{3}\cot x-4=0\) là

A. \(\dfrac{\pi}{6}\)                            B. \(\dfrac{\pi}{3}\)

C. \(\dfrac{\pi}{4}\)                            D. \(\dfrac{\pi}{5}\).

Phương pháp giải - Xem chi tiết

Tìm ĐKXĐ cho phương trình, ĐKXĐ của hàm số \(y=\dfrac{f(x)}{g(x)}\) là \(g(x)\ne 0\).

Giải phương trình bằng cách sử dụng công thức \(\cot x=\dfrac{1}{\tan x}\), quy đồng và đưa phương trình về dạng phương trình bậc hai đối với hàm lượng giác \(\tan x\).

Phương trình \(\tan x=\tan\alpha\) có nghiệm là \(x=\alpha+k\pi ,k\in\mathbb{Z}\).

Lời giải chi tiết

ĐKXĐ: \(\cos x\ne 0\) và \(\sin x\ne 0\).

Ta có: \(\sqrt{3}\tan x+\sqrt{3}\cot x-4=0\)

\(\Leftrightarrow \sqrt{3}\tan x+\sqrt{3}\dfrac{1}{\tan x}-4=0\)

\(\Leftrightarrow \sqrt{3}{\tan}^2 x+\sqrt{3}-4\tan x=0\)

\( \Leftrightarrow \left[ \begin{array}{l}\tan x=\sqrt{3} \text{(thỏa mãn)}\\\tan x=\dfrac{1}{\sqrt{3}}\text{(thỏa mãn)}\end{array} \right.\)

\( \Leftrightarrow \left[ \begin{array}{l}x=\dfrac{\pi}{3}+k\pi,k\in\mathbb{Z} \\ x=\dfrac{\pi}{6}+k\pi,k\in\mathbb{Z}\end{array} \right.\)

Với \( x=\dfrac{\pi}{3}+k\pi \) nghiệm dương nhỏ nhất là \(\dfrac{\pi}{3}\) tại \(k=0\)

Với \( x=\dfrac{\pi}{6}+k\pi \) nghiệm dương nhỏ nhất là \(\dfrac{\pi}{6}\) tại \(k=0\)

Vì \(\dfrac{\pi}{6}<\dfrac{\pi}{3}\) nên nghiệm dương nhỏ nhất là \(\dfrac{\pi}{6}\)

Đáp án: A.

Cách trắc nghiệm:

Xét các giá trị từ nhỏ tới lớn trong các phương án.

Nhỏ nhất là giá trị π/6. Khi đó, tanπ/6 = 1/√3, cotπ/6 = √3, thay vào phương trình thấy thỏa mãn.

Vậy π/6 là nghiệm dương nhỏ nhất của phương trình.

Loigiaihay.com

Quảng cáo

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close