Bài 1.55 trang 41 SBT đại số và giải tích 11

Giải bài 1.55 trang 41 sách bài tập đại số và giải tích 11. Nghiệm âm lớn nhất của phương trình sin 2x...

Quảng cáo

Đề bài

Nghiệm âm lớn nhất của phương trình \(\sin 2x\sin 4x+\cos 6x=0\) là

A. \(-\dfrac{\pi}{12}\)

B. \(-\dfrac{\pi}{4}\)

C. \(-\dfrac{\pi}{8}\)

D. \(-\dfrac{\pi}{6}\).

Phương pháp giải - Xem chi tiết

Để giải phương trình ta sử dụng

- Công thức biến đôi tích thành tổng \(\sin x\sin y \)

\(= \dfrac{1}{2}\left[ {\cos (x - y) - \cos (x + y)} \right]\).

- Công thức biến đổi tổng thành tích \(\cos x + \cos y = 2\cos \dfrac{{x + y}}{2}\cos \dfrac{{x - y}}{2}\).

Lời giải chi tiết

Ta có: \(\sin 2x\sin 4x+\cos 6x=0\)

\(\Leftrightarrow\dfrac{1}{2}\left[ {\cos (4x – 2x) - \cos (4x+ 2x)} \right] +\)

\(\cos 6x=0\)

\(\Leftrightarrow\dfrac{1}{2}(\cos 2x-\cos 6x)+\cos 6x=0\)

\(\Leftrightarrow\dfrac{1}{2}(\cos 2x+\cos 6x)=0\)

\(\Leftrightarrow\dfrac{1}{2}2\cos \dfrac{{6x + 2x}}{2}\cos \dfrac{{6x – 2x}}{2}=0\)

\(\Leftrightarrow \cos 4x\cos 2x=0\)

\( \Leftrightarrow \left[ \begin{array}{l}\cos 2x = 0\\\cos 4x=0\end{array} \right.\)

\(\Leftrightarrow\left[\begin{array}{l}2x=\dfrac{\pi}{2}+k\pi,k\in\mathbb{Z}\\4x=\dfrac{\pi}{2}+k\pi,k\in\mathbb{Z}\end{array} \right.\)

\(\Leftrightarrow\left[\begin{array}{l}x=\dfrac{\pi}{4}+k\dfrac{\pi}{2},k\in\mathbb{Z}\\x=\dfrac{\pi}{8}+k\dfrac{\pi}{4},k\in\mathbb{Z}\end{array} \right.\)

Với \(x=\dfrac{\pi}{4}+k\dfrac{\pi}{2}\) nghiệm âm lớn nhất là \(-\dfrac{\pi}{4}\) ứng với \(k=-1\)

Với \(x=\dfrac{\pi}{8}+k\dfrac{\pi}{4}\) nghiệm âm lớn nhất là \(-\dfrac{\pi}{8}\) ứng với \(k=-1\)

Vì \(-\dfrac{\pi}{8}>-\dfrac{\pi}{4}\) nên nghiệm âm lớn nhất là \(-\dfrac{\pi}{8}\)

Đáp án: C.

Cách trắc nghiệm:

Xét các giá trị từ lớn tới nhỏ trong các phương án.

Với giá trị lớn nhất là x = (-π)/12 thì cos6x = 0 còn sin2x ≠ 0, sin4x ≠ 0 nên (-π)/12 không phải là nghiệm. Vậy phương án A bị loại.

Với giá trị x = (-π)/8 thì sin2x = sin((-π)/4) = (-√2)/2, sin4x = sin((-π)/2) = -1,

cos6x = cos((-3π)/4) = (-√2)/2 nên x = (-π)/8 là nghiệm của phương trình.

Loigiaihay.com

Quảng cáo

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close