Bài 1.29 trang 32 SBT hình học 10

Giải bài 1.29 trang 32 sách bài tập hình học 10. Cho tam giác ABC...

Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn

Cho tam giác \(ABC\). Dựng \(\overrightarrow {AB'}  = \overrightarrow {BC} ,\overrightarrow {CA'}  = \overrightarrow {AB} \) và \(\overrightarrow {BC'}  = \overrightarrow {CA} \).

LG a

Chứng minh rằng \(A\) là trung điểm của \(B'C'\).

Phương pháp giải:

Chứng minh \(\overrightarrow {AB'}  + \overrightarrow {AC'}  = \overrightarrow 0 \).

Lời giải chi tiết:

 \(\overrightarrow {BC'}  = \overrightarrow {CA} \) \( \Rightarrow \)Tứ giác \(ACBC'\) là hình bình hành \( \Rightarrow \overrightarrow {AC'}  = \overrightarrow {CB} \).

\(\overrightarrow {AB'}  + \overrightarrow {AC'}  = \overrightarrow {BC}  + \overrightarrow {CB}  = \overrightarrow {BB}  = \overrightarrow 0 \) \( \Rightarrow A\) là trung điểm của \(B'C'\).

LG b

Chứng minh các đường thẳng \(AA',BB'\) và \(CC'\) đồng quy.

Phương pháp giải:

Chứng minh \(AA',BB',CC'\) đồng quy tại trọng tâm \(G\) của tam giác \(ABC\)

Lời giải chi tiết:

Vì tứ giác \(ACBC'\) là hình bình hành nên \(CC'\) chứa trung tuyến của tam giác \(ABC\) xuất phát từ đỉnh \(C\).

Tương tự như vậy với \(AA'\) và \(BB'\).

Cụ thể AA' chứa trung tuyến của tam giác ABC kẻ từ A.

BB' chứa trung tuyến của tam giác ABC kẻ từ B.

Mà ba trung tuyến đồng quy tại trọng tâm của tam giác ABC.

Do đó \(AA',BB',CC'\) đồng quy tại trọng tâm \(G\) của tam giác \(ABC\).

Loigiaihay.com

Quảng cáo

Gửi bài