Giải bài tập 9.34 trang 91 SGK Toán 9 tập 2 - Kết nối tri thức

Biết rằng bốn đỉnh A, B, C, D của một hình vuông cùng nằm trên một đường tròn (O) theo thứ tự ngược chiều kim đồng hồ. Phép quay thuận chiều ({45^o}) biến các điểm A, B, C, D lần lượt thành các điểm E, F, G, H. a) Vẽ đa giác EAFBGCHD. b) Đa giác EAFBGCHD có phải là một hình bát giác đều hay không? Vì sao?

Quảng cáo

Đề bài

Biết rằng bốn đỉnh A, B, C, D của một hình vuông cùng nằm trên một đường tròn (O) theo thứ tự ngược chiều kim đồng hồ. Phép quay thuận chiều 45o biến các điểm A, B, C, D lần lượt thành các điểm E, F, G, H.

a) Vẽ đa giác EAFBGCHD.

b) Đa giác EAFBGCHD có phải là một hình bát giác đều hay không? Vì sao?

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

a) + Vẽ đường tròn (O). Trên đường tròn vẽ hình vuông ABCD sao cho các đỉnh A, B, C, D theo thứ tự ngược chiều kim đồng hồ.

+ Vẽ điểm E thuộc đường tròn (O) sao cho ^AOE=45o và tia OA quay thuận theo chiều kim đồng hồ đến tia OE.

+ Xác định các điểm F, G, H tương tự như xác định điểm E. Nối A với E, E với D, D với H, H với C, C với G, G với B, B với F, F với A ta được đa giác EAFBGCHD.

b) Chứng minh AE=ED=DH=HC=CG=BG=BF=FA^FAE=^AED=^EDH=^DHC=^HCG=^CGB=^GBF=^BFA nên đa giác EAFBGCHD là bát giác đều.

Lời giải chi tiết

a) + Vẽ đường tròn (O). Trên đường tròn vẽ hình vuông ABCD sao cho các đỉnh A, B, C, D theo thứ tự ngược chiều kim đồng hồ.

+ Vẽ điểm E thuộc đường tròn (O) sao cho ^AOE=45o và tia OA quay thuận theo chiều kim đồng hồ đến tia OE.

+ Xác định các điểm F, G, H tương tự như xác định điểm E. Nối A với E, E với D, D với H, H với C, C với G, G với B, B với F, F với A ta được đa giác EAFBGCHD.

b) Vì A, E, D, H, C, G, B, F cùng thuộc (O) nên

OA=OE=OD=OH=OC=OG=OB=OF

Vì ABCD là hình vuông nên

^AOD=^DOC=^BOC=^BOA=90o

Lại có: ^AOE=^BOF=^COG=^DOH=45o nên ^DOE=^AOF=^BOG=^COH=45o

Ta có:

ΔAOE=ΔDOE=ΔDOH=ΔCOH=ΔCOG=ΔBOG=ΔBOF=ΔAOF(c.g.c)

Suy ra:

+) AE=ED=DH=HC=CG=BG=BF=FA

+) ^OAE=^OEA=^OED=^ODE=^ODH=^OHD=^OHC=^OCH=^OCG=^OGC=^OGB=^OBG=^OBF=^OFB=^OFA=^FAO

Do đó, ^FAE=^AED=^EDH=^DHC=^HCG=^CGB=^GBF=^BFA

Đa giác EAFBGCHD có

^FAE=^AED=^EDH=^DHC=^HCG=^CGB=^GBF=^BFA và  AE=ED=DH=HC=CG=BG=BF=FA nên đa giác EAFBGCHD là hình bát giác đều.

Quảng cáo

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí

>> Học trực tuyến lớp 9 & lộ trình Up 10! trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều), theo lộ trình 3: Nền Tảng, Luyện Thi, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả.

close