Bài 94 trang 20 SBT toán 9 tập 1

Giải bài 94 trang 20 sách bài tập toán 9. Chứng minh: x^3 + y^3 + z^3-3xyz=...

Quảng cáo

Đề bài

Chứng minh: 

\({x^3} + {y^3} + {z^3} - 3xyz\)\( = \dfrac{1}{2}\left( {x + y + z} \right)\left[ {{{\left( {x - y} \right)}^2} + {{\left( {y - z} \right)}^2} + {{\left( {z - x} \right)}^2}} \right]\)

Từ đó chứng tỏ:

a) Với ba số \(x, y, z\) không âm thì \(\dfrac{{{x^3} + {y^3} + {z^3}}}{3}\ge xyz\)

b) Với ba số \(a, b, c\) không âm thì \(\dfrac{{a + b + c}}{3} \ge \root 3 \of {abc} \)

(Bất đẳng thức Cô-si cho ba số không âm).

Dấu đẳng thức xảy ra khi ba số \(a, b, c\) bằng nhau. 

Phương pháp giải - Xem chi tiết

- Áp dụng hằng đẳng thức:

\({(a - b)^2} = {a^2} - 2ab + {b^2}\)

- Biến đổi cơ bản biểu thức và chứng minh vế phải bằng vế trái.

Lời giải chi tiết

Ta có: 

\(\dfrac{1}{2}\left( {x + y + z} \right)\)\(\left[ {{{\left( {x - y} \right)}^2} + {{\left( {y - z} \right)}^2} + {{\left( {z - x} \right)}^2}} \right]\) 

\( = \dfrac{1}{2}\left( {x + y + z} \right)\)\(\left[ {\left( {{x^2} - 2xy + {y^2}} \right) + \left( {{y^2} - 2yz + {z^2}} \right) + \left( {{z^2} - 2zx + {x^2}} \right)} \right]\)

\( = \dfrac{1}{2}\left( {x + y + z} \right)\)\(\left( {{x^2} - 2xy + {y^2} + {y^2} - 2yz + {z^2} + {z^2} - 2zx + {x^2}} \right)\)

\( = \dfrac{1}{2}\left( {x + y + z} \right)\)\(\left( {2{x^2} + 2{y^2} + 2{z^2} - 2xy - 2yz - 2zx} \right)\)

\( = \left( {x + y + z} \right)\)\(\left( {{x^2} + {y^2} + {z^2} - xy - yz - zx} \right)\)

\( = {x^3} + x{y^2} + x{z^2} - {x^2}y - xyz - {x^2}z\)

\( + {x^2}y + {y^3} + y{z^2} - x{y^2} - {y^2}z - xyz\)

\( + {x^2}z + {y^2}z + {z^3} - xyz - y{z^2} - x{z^2}\)

\( = {x^3} + {y^3} + {z^3} - 3xyz\)

Vế trái bằng vế phải nên đẳng thức được chứng minh.

a) Nếu \(x \ge 0,y \ge 0,z \ge 0\) thì:

\(x + y + z \ge 0\)

\({\left( {x - y} \right)^2} + {\left( {y - z} \right)^2} + {\left( {z - z} \right)^2} \ge 0\) 

Theo đẳng thức đã chứng minh ở trên, suy ra: 

\(\eqalign{
& {x^3} + {y^3} + {z^3} - 3xyz \ge 0 \cr 
& \Leftrightarrow {x^3} + {y^3} + {z^3} \ge 3xyz \cr} \)

Hay: \(\dfrac{{{x^3} + {y^3} + {z^3}}}{3} \ge xyz\) 

b) Nếu \(a \ge 0,b \ge 0,c \ge 0\) thì \(\root 3 \of a  \ge 0,\root 3 \of b  \ge 0,\root 3 \of {c \ge 0} \)

Đặt \(x = \root 3 \of a ,y = \root 3 \of b ,z = \root 3 \of c \) thì x, y, z cũng không âm.

Từ chứng minh câu a, ta có: \(\dfrac{{{x^3} + {y^3} + {z^3}}}{3} \ge xyz\) 

Hay: 

\(\eqalign{
& {{{{\left( {\root 3 \of a } \right)}^3} + {{\left( {\root 3 \of b } \right)}^3} + {{\left( {\root 3 \of c } \right)}^3}} \over 3} \cr 
& \ge \left( {\root 3 \of a } \right)\left( {\root 3 \of b } \right)\left( {\root 3 \of c } \right) \cr 
& \Leftrightarrow {{a + b + c} \over 3} \ge \root 3 \of {abc} \cr} \) 

Loigiaihay.com

  • Bài 95 trang 21 SBT toán 9 tập 1

    Giải bài 95 trang 21 sách bài tập toán 9. Áp dụng bất đẳng thức Cô-si cho ba số không âm, chứng minh..Trong các hình hộp chữ nhật có cùng tổng ba kích thước thì hình lập phương có thể tích lớn nhất...

  • Bài 93 trang 20 SBT toán 9 tập 1

    Giải bài 93 trang 20 sách bài tập toán 9. Tìm tập hợp các giá trị x thỏa mãn điều kiện sau và biểu diễn tập hợp đó trên trục số...

  • Bài 92 trang 20 SBT toán 9 tập 1

    Giải bài 92 trang 20 sách bài tập toán 9. So sánh (không dùng bảng tính hay máy tính bỏ túi)...33...3 căn bậc 3 (3333333)...

  • Bài 91 trang 20 SBT toán 9 tập 1

    Giải bài 91 trang 20 sách bài tập toán 9. Tìm giá trị gần đúng của căn bậc ba mỗi số sau bằng bảng lập phương và kiểm tra bằng máy tính bỏ túi 12;...25,3..-0,08.....

  • Bài 90 trang 20 SBT toán 9 tập 1

    Giải bài 90 trang 20 sách bài tập toán 9. Chứng minh các bất đẳng thức sau...

Quảng cáo

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí

close