Bài 58 trang 18 SBT toán 7 tập 1Giải bài 58 trang 18 sách bài tập toán 7 tập 1. Hãy điền các số còn thiếu vào các ô trống... Quảng cáo
Đề bài Hình vuông dưới đây có tính chất: mỗi ô ghi một lũy thừa của \(10\); tích các số trong mỗi hàng, mỗi cột và mỗi đường chéo đều bằng nhau. Hãy điền các số còn thiếu vào các ô trống: Phương pháp giải - Xem chi tiết Áp dụng các công thức: \({x^m}.{x^n} = {x^{m + n}}\) \({x^m}:{x^n} = {x^{m - n}}\) Lời giải chi tiết Xét tích các số ở hàng thứ nhất ta được: \({10^0}{.10^{ - 5}}{.10^2} = {10^{0 + \left( { - 5} \right) + 2}} = {10^{ - 3}}\) Ta có tích các số trong mỗi hàng, mỗi cột và mỗi đường chéo đều bằng nhau (bằng \({10^{ - 3}}\)). Xét cột thứ hai, ô trống thứ hai cần điền có giá trị là: \({10^{ - 3}}:\left( {{{10}^{ - 5}}{{.10}^3}} \right) = {10^{ - 3}}:{10^{ - 2}} \)\(\,= {10^{\left( { - 3} \right) - \left( { - 2} \right)}} = {10^{ - 1}}\) Xét đường chéo thứ nhất, ô trống cần điền có giá trị là: \({10^{ - 3}}:\left( {{{10}^0}{{.10}^{ - 1}}} \right) = {10^{ - 3}}:{10^{ - 1}} \)\(\,= {10^{\left( { - 3} \right) - \left( { - 1} \right)}} = {10^{ - 2}}\) Xét cột thứ ba, ô trống thứ ba cần điền có giá trị là: \({10^{ - 3}}:\left( {{{10}^2}{{.10}^{ - 2}}} \right) = {10^{ - 3}}:{10^0} = {10^{ - 3}}\) Xét hàng thứ hai, ô trống thứ nhất cần điền có giá trị là: \({10^{ - 3}}:\left( {{{10}^{ - 3}}{{.10}^{ - 1}}} \right) = {10^{ - 3}}:{10^{ - 4}} \)\(\,= {10^{\left( { - 3} \right) - \left( { - 4} \right)}} = {10^1}\) Xét hàng thứ ba, ô trống thứ nhất cần điền có giá trị là: \({10^{ - 3}}:\left( {{{10}^3}{{.10}^{ - 2}}} \right) = {10^{ - 3}}:{10^1} \)\(\,= {10^{\left( { - 3} \right) - 1}} = {10^{ - 4}}\) Ta được bảng sau: Loigiaihay.com
Quảng cáo
|