Bài 4.8 trang 157 SBT đại số và giải tích 11

Giải bài 4.8 trang 157 sách bài tập đại số và giải tích 11. Cho dãy số (un) xác định bởi công thức truy hồi...

Quảng cáo

Đề bài

Cho dãy số \(\displaystyle \left( {{u_n}} \right)\) xác định bởi công thức truy hồi

\(\displaystyle \left\{ \matrix{
{u_1} = 2 \hfill \cr 
{u_{n + 1}} = {{{u_n} + 1} \over 2}{\rm{ voi }}n \ge 1 \hfill \cr} \right.\)

Chứng minh rằng \(\displaystyle \left( {{u_n}} \right)\) có giới hạn hữu hạn khi \(\displaystyle n\to +\infty \). Tìm giới hạn đó.

Phương pháp giải - Xem chi tiết

Tìm công thức tổng quát và tính giới hạn

Lời giải chi tiết

\(\displaystyle \left\{ \matrix{
{u_1} = 2 \hfill \cr 
{u_{n + 1}} = {{{u_n} + 1} \over 2}{\rm\,\,{ vớii }}\,\,n \ge 1 \hfill \cr} \right.\)

Ta có:

\(\begin{array}{l}{u_1} = 2\\{u_2} = \dfrac{3}{2} = \dfrac{{2 + 1}}{2}\\{u_3} = \dfrac{5}{4} = \dfrac{{{2^2} + 1}}{{{2^2}}}\\{u_4} = \dfrac{9}{8} = \dfrac{{{2^3} + 1}}{{{2^3}}}\\{u_5} = \dfrac{{17}}{{16}} = \dfrac{{{2^4} + 1}}{{{2^4}}}\end{array}\)

Dự đoán \({u_n} = \dfrac{{{2^{n - 1}} + 1}}{{{2^{n - 1}}}}\,\left( * \right)\) với \(\forall n \in {\mathbb{N}^*}\)

Thật vậy,

+) Với \(n = 1\) ta có \({u_1} = \dfrac{{{2^{1 - 1}} + 1}}{{{2^{1 - 1}}}} = 2\) nên đúng.

+) Giả sử \(\left( * \right)\) đúng với \(n = k\), nghĩa là \({u_k} = \dfrac{{{2^{k - 1}} + 1}}{{{2^{k - 1}}}}\), ta cần chứng minh \({u_{k + 1}} = \dfrac{{{2^k} + 1}}{{{2^k}}}\)

Ta có:

\({u_{k + 1}} = \dfrac{{{u_k} + 1}}{2}\)\( = \dfrac{1}{2}\left( {{u_k} + 1} \right) = \dfrac{1}{2}\left( {\dfrac{{{2^{k - 1}} + 1}}{{{2^{k - 1}}}} + 1} \right)\) \( = \dfrac{1}{2}.\dfrac{{{2^{k - 1}} + 1 + {2^{k - 1}}}}{{{2^{k - 1}}}}\)  \( = \dfrac{{{{2.2}^{k - 1}} + 1}}{{{{2.2}^{k - 1}}}} = \dfrac{{{2^k} + 1}}{{{2^k}}}\)

\( \Rightarrow dpcm\).

Từ đó, 

\(\displaystyle \eqalign{
& \lim {u_n} = \lim {{{2^{n - 1}} + 1} \over {{2^{n - 1}}}} \cr 
& = \lim \left[ {1 + {{\left( {{1 \over 2}} \right)}^{n - 1}}} \right] \cr 
& = \lim \left[ {1 + 2.{{\left( {{1 \over 2}} \right)}^n}} \right] = 1 \cr}\)

Loigiaihay.com

Quảng cáo

Xem thêm tại đây: Bài 1: Giới hạn của dãy số
Gửi bài