Bài 4.6 trang 157 SBT đại số và giải tích 11

Giải bài 4.6 trang 157 sách bài tập đại số và giải tích 11. Cho hai dãy số (un) và (vn). ..

Quảng cáo

Đề bài

Cho hai dãy số (un) và (vn). Chứng minh rằng nếu \(\lim {v_n} = 0\) và \(\left| {{u_n}} \right| \le {v_n}\) với mọi n thì \(\lim {u_n} = 0\)

Phương pháp giải - Xem chi tiết

Xem lại định nghĩa dãy số có giới hạn \(0\) tại đây.

Lời giải chi tiết

\(\lim {v_n} = 0 \Rightarrow \left| {{v_n}} \right|\) có thể nhỏ hơn một số dương bé tuỳ ý, kể từ một số hạng nào đó trở đi  (1)

Vì \(\left| {{u_n}} \right| \le {v_n}\) và \({v_n} \le \left| {{v_n}} \right|\) với mọi n, nên \(\left| {{u_n}} \right| \le \left| {{v_n}} \right|\) với mọi n.      (2)

Từ (1) và (2) suy ra \(\left| {{u_n}} \right|\) cũng có thể nhỏ hơn một số dương bé tuỳ ý, kể từ một số hạng nào đó trở đi, nghĩa là \(\lim {u_n} = 0\)

 Loigiaihay.com

Quảng cáo

Xem thêm tại đây: Bài 1: Giới hạn của dãy số
Gửi bài