Bài 3.34 trang 164 SBT hình học 10Giải bài 3.34 trang 164 sách bài tập hình học 10. Cho elip (E)... Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn
Cho elip (E): \(9{x^2} + 25{y^2} = 225\). LG a Tìm tọa độ hai điểm \({F_1}\), \({F_2}\) và các đỉnh của (E). Phương pháp giải: - Đưa phương trình \(\left( E \right)\) về dạng chính tắc rồi suy ra \(a,b\). - Tính \(c\) theo công thức \({c^2} = {a^2} - {b^2}\) và suy ra tọa độ các tiêu điểm. Giải chi tiết: (E): \(9{x^2} + 25{y^2} = 225 \Leftrightarrow \dfrac{{{x^2}}}{{25}} + \dfrac{{{y^2}}}{9} = 1\). a) Ta có: \({a^2} = 25,{b^2} = 9\)\( \Rightarrow a = 5,b = 3\). Ta có : \({c^2} = {a^2} - {b^2} = 16\)\( \Rightarrow c = 4\). Vậy (E) có hai tiêu điểm là : \({F_1}\left( { - 4;0} \right)\) và \({F_2}\left( {4;0} \right)\) và có bốn đỉnh là \({A_1}\left( { - 5;0} \right)\), \({A_2}\left( {5;0} \right)\), \({B_1}\left( {0; - 3} \right)\), \({B_2}\left( {0;3} \right)\). LG b Tìm điểm \(M \in (E)\) sao cho \(M \) nhìn \({F_1}{F_2}\) dưới một góc vuông. Phương pháp giải: Sử dụng chú ý \(\widehat {{F_1}M{F_2}} = {90^0}\) \( \Leftrightarrow OM = O{F_1} = O{F_2} = c\), tìm \(c\). - Lập hệ phương trình ẩn \(x,y\), giải hệ và kết luận. Giải chi tiết: Gọi \(M(x;y)\) là điểm cần tìm, ta có : \(\left\{ \begin{array}{l}M \in (E)\\\widehat {{F_1}M{F_2}} = {90^0}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}M \in (E)\\O{M^2} = {c^2}\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}9{x^2} + 25{y^2} = 225\\{x^2} + {y^2} = 16\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}{x^2} = \dfrac{{175}}{{16}}\\{y^2} = \dfrac{{81}}{{16}}\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}x = \pm \dfrac{{5\sqrt 7 }}{4}\\y = \pm \dfrac{9}{4}\end{array} \right.\) Vậy có bốn điểm \(M \) thỏa mãn điều kiện của đề bài là : \(\left( {\dfrac{{5\sqrt 7 }}{4};\dfrac{9}{4}} \right)\), \(\left( {\dfrac{{5\sqrt 7 }}{4}; - \dfrac{9}{4}} \right)\), \(\left( { - \dfrac{{5\sqrt 7 }}{4};\dfrac{9}{4}} \right)\), \(\left( { - \dfrac{{5\sqrt 7 }}{4}; - \dfrac{9}{4}} \right)\). Loigiaihay.com
Quảng cáo
|