Bài 3.25 trang 150 SBT hình học 11

Giải bài 3.25 trang 150 sách bài tập hình học 11. Cho tam giác ABC vuông tại B. Một đoạn thẳng AD vuông góc với mặt phẳng (ABC). Chứng minh rằng mặt phẳng (ABD) vuông góc với mặt phẳng (BCD).

Quảng cáo

Đề bài

Cho tam giác ABC vuông tại B. Một đoạn thẳng AD vuông góc với mặt phẳng (ABC). Chứng minh rằng mặt phẳng (ABD)  vuông góc với mặt phẳng (BCD).

Từ điểm A trong mặt phẳng (ABD) ta vẽ AH vuông góc với BD, chứng minh rằng AH vuông góc với mặt phẳng (BCD).

Phương pháp giải - Xem chi tiết

Sử dụng lý thuyết: "Hai mặt phẳng vuông góc với nhau, nếu có đường thẳng nằm trong mặt phẳng này mà vuông góc với giao tuyến thì đường thẳng đó sẽ vuông góc với mặt phẳng còn lại".

Lời giải chi tiết

Vì \(A{\rm{D}} \bot \left( {ABC} \right)\) nên \(A{\rm{D}} \bot BC\)

Ngoài ra \(BC \bot AB\) nên ta có \(BC \bot \left( {ABD} \right)\)

Vì mặt phẳng (BCD) chứa BC mà \(BC \bot \left( {ABD} \right)\) nên ta suy ra mặt phẳng (BCD) vuông góc với mặt phẳng (ABD).

Hai mặt phẳng (BCD)  và (ABD)  vuông góc với nhau và có giao tuyến là BD. Đường thẳng AH thuộc mặt phẳng (ABD) và vuông góc với giao tuyến BD nên AH vuông góc với mặt phẳng (BCD).

 Loigiaihay.com

  • Bài 3.26 trang 151 SBT hình học 11

    Giải bài 3.26 trang 151 sách bài tập hình học 11. Hình chóp S.ABCD có đáy là hình thoi ABCD cạnh a và có SA = SB = SC = a. Chứng minh:...

  • Bài 3.27 trang 151 SBT hình học 11

    Giải bài 3.27 trang 151 sách bài tập hình học 11. a) Cho hình lập phương ABCD.A’B’C’D’ cạnh a. Chứng minh rằng đường thẳng AC’ vuông ...

  • Bài 3.28 trang 151 SBT hình học 11

    Giải bài 3.28 trang 151 sách bài tập hình học 11. Cho hình chóp đều S.ABC. Chứng minh...

  • Bài 3.29 trang 151 SBT hình học 11

    Giải bài 3.29 trang 151 sách bài tập hình học 11. Tứ diện SABC có SA vuông góc với mặt phẳng (ABC). Gọi H và K lần lượt là trực tâm của các tam giác ABC và SBC. Chứng minh rằng:...

  • Bài 3.30 trang 151 SBT hình học 11

    Giải bài 3.30 trang 151 sách bài tập hình học 11. Tứ diện SABC có ba đỉnh A, B, C tạo thành tam giác vuông cân đỉnh B và , có cạnh SA vuông góc với mặt phẳng (ABC) và SA = a...

Quảng cáo

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close