Bài 3.30 trang 151 SBT hình học 11

Giải bài 3.30 trang 151 sách bài tập hình học 11. Tứ diện SABC có ba đỉnh A, B, C tạo thành tam giác vuông cân đỉnh B và , có cạnh SA vuông góc với mặt phẳng (ABC) và SA = a...

Quảng cáo

Đề bài

Tứ diện SABC có ba đỉnh A, B, C tạo thành tam giác vuông cân đỉnh  B và , có cạnh SA vuông góc với mặt phẳng (ABC) và SA = a.

a) Chứng minh mặt phẳng (SAB) vuông góc với  mặt phẳng (SBC).

b) Trong mặt phẳng (SAB) vẽ AH vuông góc với SB tại H, chứng minh \(AH \bot \left( {SBC} \right)\)

c) Tính độ dài đoạn AH.

d) Từ trung điểm O của đoạn AC vẽ OK vuông góc với (SBC) cắt (SBC) tại K. Tính độ dài đoạn OK.

Phương pháp giải - Xem chi tiết

Sử dụng lý thuyết: "Hai mặt phẳng vuông góc với nhau, nếu có đường thẳng nằm trong mặt phẳng này mà vuông góc với giao tuyến thì đường thẳng đó sẽ vuông góc với mặt phẳng còn lại".

Lời giải chi tiết

a)

\(\displaystyle \left. \matrix{
BC \bot AB \hfill \cr 
BC \bot SA \hfill \cr} \right\} \Rightarrow BC \bot \left( {SAB} \right) \) \(\displaystyle \Rightarrow \left( {SBC} \right) \bot \left( {SAB} \right)\)

b) \(\displaystyle AH \bot SB\) mà SB giao tuyến của hai  mặt phẳng vuông góc là (SBC) và (SAB) nên \(\displaystyle AH \bot \left( {SBC} \right)\).

c) Xét tam giác vuông SAB với đường cao AH  ta có:

\(\displaystyle {1 \over {A{H^2}}} = {1 \over {A{S^2}}} + {1 \over {A{B^2}}} \) \(\displaystyle = {1 \over {{a^2}}} + {1 \over {2{a^2}}} = {3 \over {2{a^2}}}\)

Vậy \(\displaystyle AH = {{a\sqrt 6 } \over 3}\)

d) Vì \(\displaystyle OK \bot \left( {SBC} \right)\) mà \(\displaystyle AH \bot \left( {SBC} \right)\) nên \(\displaystyle OK\parallel AH\), ta có K thuộc CH.

\(\displaystyle OK = {{AH} \over 2} = {{a\sqrt 6 } \over 6}\).

 Loigiaihay.com

  • Bài 3.31 trang 151 SBT hình học 11

    Giải bài 3.31 trang 151 sách bài tập hình học 11. Hình chóp S.ABCD có đáy là hình vuông ABCD tâm O và có cạnh SA vuông góc với mặt phẳng (ABCD)...

  • Bài 3.32 trang 152 SBT hình học 11

    Giải bài 3.32 trang 152 sách bài tập hình học 11. a) Chứng minh mặt phẳng (SAD) vuông góc với mặt phẳng (SDC), mặt phẳng (SAC) vuông góc với mặt phẳng (SCB)...

  • Bài 3.29 trang 151 SBT hình học 11

    Giải bài 3.29 trang 151 sách bài tập hình học 11. Tứ diện SABC có SA vuông góc với mặt phẳng (ABC). Gọi H và K lần lượt là trực tâm của các tam giác ABC và SBC. Chứng minh rằng:...

  • Bài 3.28 trang 151 SBT hình học 11

    Giải bài 3.28 trang 151 sách bài tập hình học 11. Cho hình chóp đều S.ABC. Chứng minh...

  • Bài 3.27 trang 151 SBT hình học 11

    Giải bài 3.27 trang 151 sách bài tập hình học 11. a) Cho hình lập phương ABCD.A’B’C’D’ cạnh a. Chứng minh rằng đường thẳng AC’ vuông ...

Quảng cáo

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close