Bài 3.24 trang 150 SBT hình học 11

Giải bài 3.24 trang 150 sách bài tập hình học 11. Chứng minh rằng nếu tứ diện ABCD ...

Quảng cáo

Đề bài

Chứng minh rằng nếu tứ diện ABCD có \(AB \bot C{\rm{D}}\) và \(AC \bot B{\rm{D}}\) thì \(AD \bot BC\).

Phương pháp giải - Xem chi tiết

Sử dụng lý thuyết: "Một đường thẳng vuông góc với một mặt phẳng thì nó vuông góc với mọi đường thẳng nằm trong mặt phẳng đó."

Lời giải chi tiết

Vẽ \(AH \bot \left( {BC{\rm{D}}} \right)\) tại H, ta có \(C{\rm{D}} \bot AH\) và vì \(C{\rm{D}} \bot AB\) ta suy ra \(C{\rm{D}} \bot BH\). Tương tự vì \({\rm{BD}} \bot AC\) ta suy ra \({\rm{BD}} \bot CH\)

Vậy H  là trực tâm của tam giác BCD  tức là \(DH \bot BC\)

Vì \(AH \bot BC\) nên ta suy ra \(BC \bot A{\rm{D}}\)

Cách khác . Trước hết ta hãy chứng minh hệ thức:

\(\overrightarrow {AB} .\overrightarrow {C{\rm{D}}}  + \overrightarrow {AC} .\overrightarrow {DB}  + \overrightarrow {{\rm{AD}}} .\overrightarrow {BC}  = 0\) với bốn điểm A, B, C, D bất kì.

Thực vậy , ta có:

\(\eqalign{
& \overrightarrow {AB} .\overrightarrow {C{\rm{D}}} = \overrightarrow {AB} .\left( {\overrightarrow {{\rm{AD}}} - \overrightarrow {AC} } \right) = \overrightarrow {AB} .\overrightarrow {{\rm{AD}}} - \overrightarrow {AC} .\overrightarrow {AB} \,\,\,\,\,\,\,\left( 1 \right) \cr 
& \overrightarrow {AC} .\overrightarrow {DB} = \overrightarrow {AC} .\left( {\overrightarrow {AB} - \overrightarrow {{\rm{AD}}} } \right) = \overrightarrow {AC} .\overrightarrow {AB} - \overrightarrow {AC} .\overrightarrow {{\rm{AD}}} \,\,\,\,\,\,\left( 2 \right) \cr 
& \overrightarrow {{\rm{AD}}} .\overrightarrow {BC} = \overrightarrow {{\rm{AD}}} .\left( {\overrightarrow {AC} - \overrightarrow {AB} } \right) = \overrightarrow {{\rm{AD}}} .\overrightarrow {AC} - \overrightarrow {{\rm{AD}}} .\overrightarrow {AB} \,\,\,\,\,\,\,\left( 3 \right) \cr} \)

\(\left( 1 \right) + \left( 2 \right) + \left( 3 \right) \Leftrightarrow \overrightarrow {AB} .\overrightarrow {C{\rm{D}}}  + \overrightarrow {AC} .\overrightarrow {DB}  + \overrightarrow {AD} .\overrightarrow {BC}  = 0\,\,\,\,\,\,\left( 4 \right)\) 

Do đó nếu \(AB \bot CD\) nghĩa là \(\overrightarrow {AB} .\overrightarrow {C{\rm{D}}}  = 0\,\,\), \(AC \bot BD\) nghĩa là \(\overrightarrow {AC} .\overrightarrow {B{\rm{D}}}  = 0\,\,\)

Từ hệ thức (4) ta suy ra \(\overrightarrow {AD} .\overrightarrow {BC}  = 0\,\,\), do đó \(A{\rm{D}} \bot BC\).

 Loigiaihay.com

  • Bài 3.25 trang 150 SBT hình học 11

    Giải bài 3.25 trang 150 sách bài tập hình học 11. Cho tam giác ABC vuông tại B. Một đoạn thẳng AD vuông góc với mặt phẳng (ABC). Chứng minh rằng mặt phẳng (ABD) vuông góc với mặt phẳng (BCD).

  • Bài 3.26 trang 151 SBT hình học 11

    Giải bài 3.26 trang 151 sách bài tập hình học 11. Hình chóp S.ABCD có đáy là hình thoi ABCD cạnh a và có SA = SB = SC = a. Chứng minh:...

  • Bài 3.27 trang 151 SBT hình học 11

    Giải bài 3.27 trang 151 sách bài tập hình học 11. a) Cho hình lập phương ABCD.A’B’C’D’ cạnh a. Chứng minh rằng đường thẳng AC’ vuông ...

  • Bài 3.28 trang 151 SBT hình học 11

    Giải bài 3.28 trang 151 sách bài tập hình học 11. Cho hình chóp đều S.ABC. Chứng minh...

  • Bài 3.29 trang 151 SBT hình học 11

    Giải bài 3.29 trang 151 sách bài tập hình học 11. Tứ diện SABC có SA vuông góc với mặt phẳng (ABC). Gọi H và K lần lượt là trực tâm của các tam giác ABC và SBC. Chứng minh rằng:...

Quảng cáo

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close