Bài 3.19 trang 124 SBT đại số và giải tích 11Giải bài 3.19 trang 124 sách bài tập đại số và giải tích 11. Trong các dãy số (un) sau đây, dãy số nào là cấp số cộng?... Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn
Trong các dãy số \(\left( {{u_n}} \right)\) sau đây, dãy số nào là cấp số cộng ? LG a \({u_n} = 3n - 1\) Phương pháp giải: Xét hiệu \({u_{n + 1}} - {u_n}\) và kiểm tra cấp số cộng nếu \({u_{n + 1}} = {u_n} + d\) Lời giải chi tiết: \({u_{n + 1}} - {u_n} = 3\left( {n + 1} \right) - 1 - (3n - 1)\)\(=3n+3-1-3n+1 = 3.\) Vì \({u_{n + 1}} = {u_n} + 3\) nên dãy số \(\left( {{u_n}} \right)\) là cấp số cộng với: \({u_1} =3.1-1= 2,d = 3.\) LG b \({u_n} = {2^n} + 1\) Phương pháp giải: Xét hiệu \({u_{n + 1}} - {u_n}\) và kiểm tra cấp số cộng nếu \({u_{n + 1}} = {u_n} + d\). Lời giải chi tiết: \({u_{n + 1}} - {u_n} = {2^{n + 1}} + 1 - {2^n} - 1 = {2^n}.\) Vì \({2^n}\) không là hằng số nên dãy số \(\left( {{u_n}} \right)\) không phải là cấp số cộng. LG c \({u_n} = {\left( {n + 1} \right)^2} - {n^2}\) Phương pháp giải: Xét hiệu \({u_{n + 1}} - {u_n}\) và kiểm tra cấp số cộng nếu \({u_{n + 1}} = {u_n} + d\). Lời giải chi tiết: Ta có \({u_n} = 2n + 1.\) Vì \({u_{n + 1}} - {u_n} = 2\left( {n + 1} \right) + 1 - (2n + 1)\) \(=2n+2+1-2n-1 = 2,\) nên dãy đã cho là cấp số cộng với \({u_1} = 2.1+1=3;d = 2.\) LG d \(\left\{ \begin{array}{l}{u_1} = 3\\{u_{n + 1}} = 1 - {u_n}\end{array} \right..\) Phương pháp giải: Xét hiệu \({u_{n + 1}} - {u_n}\) và kiểm tra cấp số cộng nếu \({u_{n + 1}} = {u_n} + d\). Lời giải chi tiết: Ta có: \(\begin{array}{l} Do đó \({u_3} - {u_2} \ne {u_2} - {u_1}\) nên dãy đã cho không là CSC. Loigiaihay.com
Quảng cáo
|