Bài 27 trang 68 SBT toán 9 tập 1Giải bài 27 trang 68 sách bài tập toán 9. Vẽ trên cùng một mặt phẳng tọa độ đồ thị của các hàm số sau:y = x; y = 0,5x... Quảng cáo
Đề bài a) Vẽ trên cùng một mặt phẳng tọa độ đồ thị của các hàm số sau: \(y = x\) (1) \(y = 0,5x\) (2) b) Đường thẳng (d) song song với trục \(Ox\) và cắt trục tung \(Oy\) tại điểm C có tung độ bằng 2, theo thứ tự cắt các đường thẳng (1) và (2) tại D và E. Tìm tọa độ của các điểm D, E . Tính chu vi và diện tích của tam giác ODE. Phương pháp giải - Xem chi tiết +) Cách vẽ đồ thị hàm số \(y = ax + b\) \((a \ne 0)\) Nếu \(b \ne 0\) thì đồ thị \(y = ax + b\) là đường thẳng đi qua các điểm \(A(0;b)\); \(B( - \dfrac{b}{a};0)\). +) Chu vi tam giác bằng tổng ba cạnh +) Diện tích tam giác bằng nửa tích chiều cao với cạnh đáy tương ứng. Lời giải chi tiết a) * Vẽ đồ thị hàm số \(y = x\) Cho \(x = 0\) thì \(y = 0\). Ta có : \(O(0;0)\) Cho \(x = 1\) thì \(y = 1\). Ta có: \(A_1(1;1)\) Đồ thị hàm số \(y = x\) là đường thẳng đi qua O và \(A_1.\) * Vẽ đồ thị hàm số \(y = 0,5x\) Cho \(x = 0\) thì \(y = 0.\) Ta có : \(O(0;0)\) Cho \(x = 1\) thì \(y = 0,5.\) Ta có : \(A_2(1;0,5)\) Đồ thị hàm số \(y = 0,5x\) là đường thẳng đi qua \(O\) và \(A_2\) . b) Qua điểm \(C\) trên trục tung có tung độ bằng \(2,\) kẻ đường thẳng song song với \(Ox\) cắt đồ thị hàm số \(y = x\) tại \(D\) , cắt đồ thị hàm số \(y = 0,5x\) tại \(E.\) Điểm D có tung độ bằng \(2.\) Thay giá trị \(y = 2\) vào hàm số \(y = x\) ta được \(x = 2\) Vậy điểm \(D(2;2)\) Điểm E có tung độ bằng \(2.\) Thay giá trị \(y = 2\) vào hàm số \(y = 0,5x\) ta được \(x = 4.\) Vậy điểm \(E(4;2)\) Gọi \(D’\) và \(E’ \) lần lượt là hình chiều của \(D\) và \(E\) trên \(Ox.\) Ta có: \(OD’ = 2, OE’ = 4.\) Áp dụng định lý Pi-ta-go vào tam giác vuông \(ODD’,\) ta có: \(O{D^2} = OD{'^2} + {\rm{DD}}{'^2} = {2^2} + {2^2} = 8\) Suy ra: \(OD = \sqrt 8 = 2\sqrt 2 \) Áp dụng định lý Pytago vào tam giác vuông \(OEE’,\) ta có: \(O{E^2} = OE{'^2}{\rm{ + EE}}{{\rm{'}}^2} = {4^2} + {2^2} = 20\) Suy ra: \(OE = \sqrt {20} = 2\sqrt 5 \) Lại có: \(DE = CE - CD = 4 - 2 = 2\) Chu vi tam giác \(ODE\) bằng: \(\eqalign{ Diện tích tam giác \(ODE\) bằng: \(\dfrac{1}{2}DE.OC = \dfrac{1}{2}.2.2 = 2\) (đơn vị diện tích). Loigiaihay.com
Quảng cáo
|