Bài 2.5 trang 64 SBT hình học 11

Giải bài 2.5 trang 64 sách bài tập hình học 11. Cho hình chóp S. ABCD. Lấy M, N và P lần lượt là các điểm trên các đoạn SA, AB và BC sao cho chúng không trùng với trung điểm của các đoạn thẳng ấy. Tìm giao điểm (nếu có) của mặt phẳng (MNP) với các cạnh của hình chóp.

Quảng cáo

Đề bài

Cho hình chóp \(S. ABCD\). Lấy \(M\), \(N\) và \(P\) lần lượt là các điểm trên các đoạn \(SA\), \(AB\) và \(BC\) sao cho chúng không trùng với trung điểm của các đoạn thẳng ấy. Tìm giao điểm (nếu có) của mặt phẳng \((MNP)\) với các cạnh của hình chóp.

Phương pháp giải - Xem chi tiết

Ta lần lượt tìm giao điểm của mặt phẳng \((MNP)\) với các đường thẳng chứa các cạnh của hình chóp.

Muốn tìm giao điểm của mặt phẳng \((\alpha)\) với đường thẳng \(d\):

- Tìm đường thẳng \(d’\) sao cho \(d’\in (\alpha)\) và \(d, d’\) cùng thuộc một mặt phẳng.

- Giao điểm \(d\) và \(d’\) là giao điểm của mặt phẳng \((\alpha)\) với đường thẳng \(d\).

Lời giải chi tiết

Ta có giao điểm của \( (MNP)\) với \(SA, AB, BC\) lần lượt là \(M, N, P\).

Trong \((SAB)\) kéo dài \(MN\) và \(SB\), khi đó gọi \(I=MN\cap SB\)

Ta có:

\(\begin{array}{l}\left\{ \begin{array}{l}I \in MN,MN \subset (MNP) \Rightarrow I \in (MNP)\\I \in SB\end{array} \right.\\ \Rightarrow I = (MNP) \cap SB\end{array}\)

Trong \((ABCD)\) kéo dài \(NP\) và kéo dài \(CD\), khi đó gọi \(E=NP\cap CD\)

Ta có:

\(\begin{array}{l}\left\{ \begin{array}{l}E \in NP,NP \subset (MNP) \Rightarrow E \in (MNP)\\E \in CD\end{array} \right.\\ \Rightarrow E = (MNP) \cap CD\end{array}\)

Trong \((MNP)\) hay cũng là \((MIP)\) kéo dài \(IP\), khi đó gọi \(J=IP\cap SC\)

Ta có:

\(\begin{array}{l}\left\{ \begin{array}{l}J \in IP,IP \subset (MNP) \Rightarrow J \in (MNP)\\J \in SC\end{array} \right.\\ \Rightarrow J = (MNP) \cap SC\end{array}\)

Trong \((SCD)\) kéo dài \(EJ\) gọi \(K=EJ\cap SD\)

Ta có:

\(\begin{array}{l}\left\{ \begin{array}{l}K \in {\rm{EJ}},{\rm{EJ}} \subset (MNP) \Rightarrow K \in (MNP)\\K \in SD\end{array} \right.\\ \Rightarrow K = (MNP) \cap SD\end{array}\).

Chú ý:

Trong bài này ta chỉ xét trường hợp thông thường là khi lấy các điểm bất kì mà khi kéo dài các đường thẳng có thể cắt nhau, tức là MN cắt được SB. Còn trường hợp MN//SB thì thuộc nội dung các bài sau nên ta không xét đến.

 Loigiaihay.com

Quảng cáo

Gửi bài