Bài 2.43 trang 82 SBT hình học 11

Giải bài 2.43 trang 82 sách bài tập hình học 11. b) Giả sử đường thẳng M1M2 cắt giao tuyến m tại K. Chứng minh rằng ba điểm K, B, M thẳng hàng...

Quảng cáo

Đề bài

Cho hai mặt phẳng \(\left( \alpha  \right)\) và \(\left( \beta  \right)\) cắt nhau theo giao tuyến m. Trên đường thẳng d cắt \(\left( \alpha  \right)\) ở A và cắt \(\left( \beta  \right)\) ở B ta lấy hai diểm cố định S1,S2 không thuộc \(\left( \alpha  \right)\), \(\left( \beta  \right)\). Gọi M là một điểm di động trên \(\left( \beta  \right)\). Giả sử các đường thẳng \(M{S_1},M{S_2}\) cắt \(\left( \alpha  \right)\) lần lượt tại M1 và M2.

a) Chứng minh rằng M1M2 luôn luôn đi qua một điểm cố định.

b) Giả sử đường thẳng M1M2 cắt giao tuyến m tại K. Chứng minh rằng ba điểm K, B, M thẳng hàng.

c) Gọi b là một đường thẳng thuộc mặt phẳng \(\left( \beta  \right)\) nhưng không đi qua điểm B và cắt m tại I. Chứng minh rằng khi M di động trên b thì các điểm M1 và M2 di động trên hai đường thẳng cố định thuộc mặt phẳng \(\left( \alpha  \right)\).

Phương pháp giải - Xem chi tiết

a) Chứng minh \(M_1M_2\) đi qua \(A\) cố định.

b) Chứng minh \(K\) thuộc giao tuyến của \((M,d)\) và \((\beta )\).

Lời giải chi tiết

a) Mặt phẳng (M, d) cắt \(\left( \alpha  \right)\) theo giao tuyến M1M2. Điểm A cũng thuộc giao tuyến đó. Vậy đường thẳng M1M2 luôn luôn đi qua điểm A cố định.

b)  Mặt phẳng (M, d) cắt \(\left( \beta  \right)\) theo giao tuyến BM. Điểm K thuộc giao tuyến đó nên ba điểm K, B, M thẳng hàng.

c) Giả sử b cắt m tại I  thì mặt phẳng (S1, b) luôn luôn cắt \(\left( \alpha  \right)\) theo giao tuyến IM1. Do đó  điểm M1 di động trên giao tuyến của IM1 cố định. Còn khi M di động trên b thì mặt phẳng (S2, b) cắt \(\left( \alpha  \right)\) theo giao tuyến IM2. Do đó điểm M2 chạy trên giao tuyến IM2 cố định.

Loigiaihay.com

  • Bài 2.44 trang 82 SBT hình học 11

    Giải bài 2.44 trang 82 sách bài tập hình học 11. Cho hình lập phương ABCD.A’B’C’D’ các trung điểm E, F của các cạnh AB, DD’. Hãy xác định các thiết diện của hình lập phương cắt bởi các mặt phẳng (EFB), (EFC), (EFC’) và (EFK) với K là trung điểm của cạnh B’C’.

  • Bài 2.42 trang 82 SBT hình học 11

    Giải bài 2.42 trang 82 sách bài tập hình học 11. a) Chứng minh rằng hai đường chéo AC’ và A’C cắt nhau và hai đường chéo BD’ và B’D cắt nhau...

  • Bài 2.41 trang 82 SBT hình học 11

    Giải bài 2.41 trang 82 sách bài tập hình học 11. Cho hình hộp ABCD.A’B’C’D’. Hai điểm M và N lần lượt nằm trên hai cạnh AD và CC’ sao cho...

  • Bài 2.40 trang 81 SBT hình học 11

    Giải bài 2.40 trang 81 sách bài tập hình học 11. Cho hình hộp ABCD.A’B’C’D’. Gọi M và N lần lượt là trung điểm của hai cạnh bên AA’ và CC’. Một điểm P nằm trên cạnh bên DD’...

  • Bài 2.39 trang 81 SBT hình học 11

    Giải bài 2.39 trang 81 sách bài tập hình học 11. Từ các đỉnh của tam giác ABC ta kẻ các đoạn thẳng AA’, BB’, CC’ song song cùng chiều, bằng nhau và không nằm trong mặt phẳng của tam giác. Gọi I, G và K lần lượt là trọng tâm của các tam giác ABC, ACC’, A’B’C’...

Quảng cáo

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close