Bài 1.28 trang 38 SBT đại số và giải tích 11

Giải bài 1.28 trang 38 sách bài tập đại số và giải tích 11. Giải các phương trình sau...

Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn

Giải các phương trình sau

LG a

\({\cos}^2 x+2\sin x\cos x+5{\sin}^2 x=2\)

Phương pháp giải:

Phương pháp giải phương trình đẳng cấp đối với \(\sin\) và \(\cos\): \(a{\sin}^2 x+b\sin x\cos x+c{\cos}^2 x=d\)

Bước 1: Xét \(\cos x=0\) có là nghiệm của phương trình hay không?

Bước 2: Khi \(\cos x\ne0\)

- Chia cả 2 vế của phương trình cho \({\cos}^2 x\) ta được: \(a\dfrac{{\sin}^2 x}{{\cos}^2 x}+b\dfrac{\sin x}{\cos x}+c=\dfrac{d}{{\cos}^2 x}\)

- Sử dụng công thức \(\tan x=\dfrac{\sin x}{\cos x}\); \(\dfrac{1}{{\cos}^2 x}={\tan}^2 x+1\) đưa phương trình về dạng: 

\(a{\tan}^2 x+b\tan x+c=d(1+{\tan}^2 x)\)\(\Leftrightarrow (a−d){\tan}^2 x+b\tan x+c−d=0\)

- Giải phương trình lượng giác cơ bản của \(\tan\):

\(\tan x=\tan \alpha\)

\(\Leftrightarrow x=\alpha+k\pi ,\in\mathbb{Z}\) và đối chiếu với điều kiện.

Lời giải chi tiết:

Ta có \({\cos}^2 x+2\sin x\cos x+5{\sin}^2 x=2\)

Thấy rằng \(\cos x=0\) không thỏa mãn phương trình. Với \(\cos x\ne 0\), chia hai vế của phương trình cho \({\cos}^2 x\) ta được

\(1+2\dfrac{\sin x}{\cos x} +5\dfrac{{\sin}^2 x}{{\cos}^2 x}=\dfrac{2}{{\cos}^2 x}\)

\(\Leftrightarrow 1+2\tan x+5{\tan}^2 x=2(1+{\tan}^2 x)\)

\(\Leftrightarrow 3{\tan}^2 x+2\tan x-1=0\)

\(\Leftrightarrow \left[ \begin{array}{l} \tan x = -1\\\tan x=\dfrac{1}{3}\end{array} \right. \)

\(\Leftrightarrow \left[ \begin{array}{l} x =-\dfrac{\pi}{4}+k\pi, k\in\mathbb{Z}\\x=\arctan\dfrac{1}{3}+k\pi ,k \in \mathbb{Z}\end{array} \right. \)

LG b

\(3{\cos}^2 x-2\sin 2x+{\sin}^2 x=1\)

Phương pháp giải:

Phương pháp giải phương trình đẳng cấp đối với \(\sin\) và \(\cos\): \(a{\sin}^2 x+b\sin x\cos x+c{\cos}^2 x=d\)

Bước 1: Xét \(\cos x=0\) có là nghiệm của phương trình hay không?

Bước 2: Khi \(\cos x\ne0\)

- Chia cả 2 vế của phương trình cho \({\cos}^2 x\) ta được: \(a\dfrac{{\sin}^2 x}{{\cos}^2 x}+b\dfrac{\sin x}{\cos x}+c=\dfrac{d}{{\cos}^2 x}\)

- Sử dụng công thức \(\tan x=\dfrac{\sin x}{\cos x}\); \(\dfrac{1}{{\cos}^2 x}={\tan}^2 x+1\) đưa phương trình về dạng: 

\(a{\tan}^2 x+b\tan x+c=d(1+{\tan}^2 x)\)\(\Leftrightarrow (a−d){\tan}^2 x+b\tan x+c−d=0\)

- Giải phương trình lượng giác cơ bản của \(\tan\):

\(\tan x=\tan \alpha\)

\(\Leftrightarrow x=\alpha+k\pi ,\in\mathbb{Z}\) và đối chiếu với điều kiện.

Lời giải chi tiết:

Ta có \(3{\cos}^2 x-2\sin 2x+{\sin}^2 x=1\)

Với \(\cos x=0\) ta thấy \(VT=VP=1\). Vậy phương trình có nghiệm \(x=\dfrac{\pi}{2}+k\pi, k\in\mathbb{Z}\)

TH \(\cos x\ne 0\), chia hai vế của phương trình cho \({\cos}^2 x\) ta được

\(3-4\dfrac{\sin x}{\cos x} +\dfrac{{\sin}^2 x}{{\cos}^2 x}=\dfrac{1}{{\cos}^2 x}\)

\(\Leftrightarrow 3-4\tan x+{\tan}^2 x=1+{\tan}^2 x\)

\(\Leftrightarrow 4\tan x=2\)

\(\Leftrightarrow \tan x=\dfrac{1}{2}\)

\(\Leftrightarrow x=\arctan\dfrac{1}{2}+k\pi ,k\in\mathbb{Z}\)

Vậy nghiệm của phương trình là \(x=\dfrac{\pi}{2}+k\pi, k\in\mathbb{Z}\) và \(x=\arctan\dfrac{1}{2}+k\pi ,k\in\mathbb{Z}\).

LG c

\( 4{\cos}^2 x-3\sin x\cos x+3{\sin}^2 x=1\)

Phương pháp giải:

Phương pháp giải phương trình đẳng cấp đối với \(\sin\) và \(\cos\): \(a{\sin}^2 x+b\sin x\cos x+c{\cos}^2 x=d\)

Bước 1: Xét \(\cos x=0\) có là nghiệm của phương trình hay không?

Bước 2: Khi \(\cos x\ne0\)

- Chia cả 2 vế của phương trình cho \({\cos}^2 x\) ta được: \(a\dfrac{{\sin}^2 x}{{\cos}^2 x}+b\dfrac{\sin x}{\cos x}+c=\dfrac{d}{{\cos}^2 x}\)

- Sử dụng công thức \(\tan x=\dfrac{\sin x}{\cos x}\); \(\dfrac{1}{{\cos}^2 x}={\tan}^2 x+1\) đưa phương trình về dạng: 

\(a{\tan}^2 x+b\tan x+c=d(1+{\tan}^2 x)\)\(\Leftrightarrow (a−d){\tan}^2 x+b\tan x+c−d=0\)

- Giải phương trình lượng giác cơ bản của \(\tan\):

\(\tan x=\tan \alpha\)

\(\Leftrightarrow x=\alpha+k\pi ,\in\mathbb{Z}\) và đối chiếu với điều kiện.

Lời giải chi tiết:

Ta có \( 4{\cos}^2 x-3\sin x\cos x+3{\sin}^2 x=1\)

Thấy rằng \(\cos x=0\) không thỏa mãn phương trình. Với \(\cos x\ne 0\), chia hai vế của phương trình cho \({\cos}^2 x\) ta được

\(4-3\dfrac{\sin x}{\cos x}+3\dfrac{{\sin}^2 x}{{\cos}^2 x}=\dfrac{1}{{\cos}^2 x}\)

\(\Leftrightarrow 4-3\tan x+3{\tan}^2 x=1+{\tan}^2 x\)

\(\Leftrightarrow 2{\tan}^2 x-3\tan x+3=0 \text{(Vô nghiệm)}\)

Vậy phương trình vô nghiệm.

Loigiaihay.com

Quảng cáo
close