Giải mục 2 trang 43,44,45 SGK Toán 12 tập 1 - Chân trời sáng tạo

Tổng và hiệu của hai vectơ

Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn

 

 

KP2

Trả lời câu hỏi Khám phá 2 trang 43 SGK Toán 12 Chân trời sáng tạo

 

Cho hình hộp ABCD.A′B′C′D′ (Hình 5).

a) Trong mặt phẳng (ABCD), tìm vectơ tổng \(\overrightarrow {AB}  + \overrightarrow {AD} \)

b) So sánh hai vectơ \(\overrightarrow {BD'} ,\overrightarrow {B'D'} \)

c) Giải thích tại sao \(\overrightarrow {AB}  + \overrightarrow {B'D'}  = \overrightarrow {AD} \).

 

Phương pháp giải:

Áp dụng quy tắc hình bình hành và quy tắc ba điểm

 

Lời giải chi tiết:

a) \(\overrightarrow {AB}  + \overrightarrow {AD}  = \overrightarrow {AC} \)

b) \(\overrightarrow {BD'}  = \overrightarrow {B'D'} \)

c) \(\overrightarrow {AB}  + \overrightarrow {B'D'}  = \overrightarrow {AB}  + \overrightarrow {BD}  = \overrightarrow {AD} \)

 

KP3

Trả lời câu hỏi Khám phá 3 trang 44 SGK Toán 12 Chân trời sáng tạo

 

Cho hình hộp ABCD.A′B′C′D′.

a) Tìm các vectơ tổng \(\overrightarrow {AB}  + \overrightarrow {AD} \), \(\overrightarrow {AC}  + \overrightarrow {AA'} \)

b) Dùng kết quả của câu a và tính chất kết hợp của phép cộng vectơ để chứng minh \(\overrightarrow {AB}  + \overrightarrow {AD}  + \overrightarrow {AA'}  = \overrightarrow {AC} \)

 

Phương pháp giải:

Áp dụng quy tắc hình bình hành và tính chất kết hợp của phép cộng

 

Lời giải chi tiết:

a) \(\overrightarrow {AB}  + \overrightarrow {AD}  = \overrightarrow {AC} \);\(\overrightarrow {AC}  + \overrightarrow {AA'}  = \overrightarrow {AC'} \)

b) \(\overrightarrow {AB}  + \overrightarrow {AD}  + \overrightarrow {AA'}  = \overrightarrow {AC}  + \overrightarrow {AA'}  = \overrightarrow {AC'} \)

 

TH3

Trả lời câu hỏi Thực hành 3 trang 46 SGK Toán 12 Chân trời sáng tạo

Cho hình hộp ABCD.EFGH. Thực hiện các phép toán sau đây:

a) \(\overrightarrow {DA}  + \overrightarrow {DC}  + \overrightarrow {DH} \)

b) \(\overrightarrow {HE}  + \overrightarrow {GC}  + \overrightarrow {AB} \)

Phương pháp giải:

Áp dụng quy tắc hình bình hành, hình hộp và 2 vecto bằng nhau

 

Lời giải chi tiết:

a) \(\overrightarrow {DA}  + \overrightarrow {DC}  + \overrightarrow {DH}  = \overrightarrow {DB}  + \overrightarrow {DH}  = \overrightarrow {DF} \)

b) \(\overrightarrow {HE}  + \overrightarrow {GC}  + \overrightarrow {AB}  = \overrightarrow {HE}  + \overrightarrow {HD}  + \overrightarrow {HG}  = \overrightarrow {HB} \)

 

TH4

Trả lời câu hỏi Thực hành 4 trang 46 SGK Toán 12 Chân trời sáng tạo

 

Cho hình chóp S.ABCD có đáy là hình bình hành. Tìm các vectơ hiệu \(\overrightarrow {AS}  - \overrightarrow {DC} ,\overrightarrow {CS}  - \overrightarrow {DA} \)

 

Phương pháp giải:

Áp dụng quy tắc hiệu và 2 vecto bằng nhau

 

Lời giải chi tiết:

\(\overrightarrow {AS}  - \overrightarrow {DC}  = \overrightarrow {AS}  - \overrightarrow {AB}  = \overrightarrow {AS}  + \overrightarrow {BA}  = \overrightarrow {BS} \)

\(\overrightarrow {CS}  - \overrightarrow {DA}  = \overrightarrow {CS}  - \overrightarrow {CB}  = \overrightarrow {CS}  + \overrightarrow {BC}  = \overrightarrow {BS} \)

 

TH5

Trả lời câu hỏi Thực hành 5 trang 46 SGK Toán 12 Chân trời sáng tạo

 

 

Cho tứ diện ABCD có M và N lần lượt là trung điểm của AB và CD. Hãy thực hiện các phép toán sau đây:

a) \(\overrightarrow {BM}  + \overrightarrow {AC}  + \overrightarrow {ND} \)

b) \(\overrightarrow {AD}  - \overrightarrow {AM}  + \overrightarrow {NC} \)

 

Phương pháp giải:

Áp dụng quy tắc ba điểm, quy tắc hiệu và tính chất trung điểm

 

Lời giải chi tiết:

a) \(\overrightarrow {BM}  + \overrightarrow {AC}  + \overrightarrow {ND}  = \overrightarrow {MA}  + \overrightarrow {AC}  + \overrightarrow {CN}  = \overrightarrow {MC}  + \overrightarrow {CN}  = \overrightarrow {MN} \)

b) \(\overrightarrow {AD}  - \overrightarrow {AM}  + \overrightarrow {NC}  = \overrightarrow {AD}  + \overrightarrow {MA}  + \overrightarrow {DN}  = \overrightarrow {MD}  + \overrightarrow {DN}  = \overrightarrow {MN} \)

 

TH6

Trả lời câu hỏi Thực hành 6 trang 46 SGK Toán 12 Chân trời sáng tạo

 

Cho hình lập phương ABCD. A′B′C′D′ có cạnh bằng đơn vị. Tìm độ dài các vectơ sau đây:

a) \(\overrightarrow a  = \overrightarrow {BA}  + \overrightarrow {BC}  + \overrightarrow {BB'} \)

b) \(\overrightarrow b  = \overrightarrow {BC}  - \overrightarrow {BA}  + \overrightarrow {C'A} \)

 

Phương pháp giải:

Áp dụng quy tắc hình hộp và định lí Pytago

 

Lời giải chi tiết:

a) \(\overrightarrow a  = \overrightarrow {BA}  + \overrightarrow {BC}  + \overrightarrow {BB'}  = \overrightarrow {BD'} \)

\(|\overrightarrow a | = |\overrightarrow {BD'} | = \sqrt {B{D^2} + D{D^2}}  = \sqrt {B{A^2} + B{C^2} + D{D^2}}  = \sqrt {1 + 1 + 1}  = \sqrt 3 \)

b) \(\overrightarrow b  = \overrightarrow {BC}  - \overrightarrow {BA}  + \overrightarrow {C'A}  = \overrightarrow {BC}  + \overrightarrow {AB}  + \overrightarrow {C'A}  = \overrightarrow {CC'} \)

\(|\overrightarrow b | = |\overrightarrow {CC'} | = 1\)

 

VD2

Trả lời câu hỏi Vận dụng 2 trang 46 SGK Toán 12 Chân trời sáng tạo

Ba lực \(\overrightarrow {{F_1}} ;\overrightarrow {{F_2}} ;\overrightarrow {{F_3}} \) cùng tác động vào một vật có phương đôi một vuông góc và có độ lớn lần lượt là 2N; 3N; 4N (Hình 16). Tính độ lớn hợp lực của ba lực đã cho.

 

Phương pháp giải:

Áp dụng quy tắc hình bình hành và định lí Pytago

 

Lời giải chi tiết:

Ta có: \(|\overrightarrow {{F_2}}  + \overrightarrow {{F_3}} | = \sqrt {{F_2}^2 + {F_3}^2}  = \sqrt {{3^2} + {4^2}}  = 5\)

Độ lớn hợp lực của ba lực là: \(|\overrightarrow {{F_1}}  + \overrightarrow {{F_2}}  + \overrightarrow {{F_3}} | = \sqrt {{F_1}^2 + {5^2}}  = \sqrt {{2^2} + {5^2}}  = \sqrt {29} N\)

 

Quảng cáo

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close