Giải bài tập 4.27 trang 28 SGK Toán 12 tập 2 - Kết nối tri thứcMột vật chuyển động có gia tốc là \(a\left( t \right) = 3{t^2} + t\left( {m/{s^2}} \right)\). Biết rằng vận tốc ban đầu của vật là 2m/s. Vận tốc của vật đó sau 2 giây là A. 8m/s. B. 10m/s. C. 12m/s. D. 16m/s. Tổng hợp đề thi giữa kì 1 lớp 12 tất cả các môn - Kết nối tri thức Toán - Văn - Anh - Lí - Hóa - Sinh Quảng cáo
Đề bài
Một vật chuyển động có gia tốc là \(a\left( t \right) = 3{t^2} + t\left( {m/{s^2}} \right)\). Biết rằng vận tốc ban đầu của vật là 2m/s. Vận tốc của vật đó sau 2 giây là A. 8m/s. B. 10m/s. C. 12m/s. D. 16m/s. Phương pháp giải - Xem chi tiết Sử dụng kiến thức về tính chất cơ bản của nguyên hàm để tính: .\(\int {kf\left( x \right)dx} = k\int {f\left( x \right)dx} \). Sử dụng kiến thức về nguyên hàm một tổng để tính: \(\int {\left[ {f\left( x \right) + g\left( x \right)} \right]} \,dx = \int {f\left( x \right)dx + \int {g\left( x \right)dx} } \) Sử dụng kiến thức về nguyên hàm của hàm lũy thừa để tính: \(\int {{x^\alpha }dx} = \frac{{{x^{\alpha + 1}}}}{{\alpha + 1}} + C\left( {\alpha \ne - 1} \right)\) Lời giải chi tiết Ta có: \(v\left( t \right) = \int {a\left( t \right)dt} = \int {\left( {3{t^2} + t} \right)dt} = {t^3} + \frac{{{t^2}}}{2} + C\) Vì vận tốc ban đầu của vật là 2m/s nên: \({0^3} + \frac{{{0^2}}}{2} + C = 2\), do đó, \(C = 2\) Suy ra: \(v\left( t \right) = {t^3} + \frac{{{t^2}}}{2} + 2\). Vận tốc của vật đó sau 2 giây là: \(v\left( 2 \right) = {2^3} + \frac{{{2^2}}}{2} + 2 = 12\left( {m/s} \right)\) Chọn C
Quảng cáo
|