Giải bài tập 2.5 trang 58 SGK Toán 12 tập 1 - Kết nối tri thứcCho hình lăng trụ tam giác ABC.A’B’C’ có \(\overrightarrow {AA'} = \overrightarrow a ,\overrightarrow {AB} = \overrightarrow b \) và \(\overrightarrow {AC} = \overrightarrow c \). Hãy biểu diễn các vectơ sau qua các vectơ \(\overrightarrow a ,\overrightarrow b ,\overrightarrow c \): a) \(\overrightarrow {AB'} \); b) \(\overrightarrow {B'C} \); c) \(\overrightarrow {BC'} \). Quảng cáo
Đề bài Cho hình lăng trụ tam giác ABC.A’B’C’ có \(\overrightarrow {AA'} = \overrightarrow a ,\overrightarrow {AB} = \overrightarrow b \) và \(\overrightarrow {AC} = \overrightarrow c \). Hãy biểu diễn các vectơ sau qua các vectơ \(\overrightarrow a ,\overrightarrow b ,\overrightarrow c \): Phương pháp giải - Xem chi tiết Sử dụng quy tắc hình bình hành để biểu diễn vectơ: Nếu ABCD là hình bình hành thì \(\overrightarrow {AB} + \overrightarrow {AD} = \overrightarrow {AC} \) Lời giải chi tiết a) Vì A’ABB’ là hình bình hành nên \(\overrightarrow {AB'} = \overrightarrow {AA'} + \overrightarrow {AB} = \overrightarrow a + \overrightarrow b \) b) Vì A’ABB’ là hình bình hành nên \(\overrightarrow {AA'} = \overrightarrow {BB'} = \overrightarrow a \) Ta có: \(\overrightarrow {BC} = \overrightarrow {BA} + \overrightarrow {AC} = - \overrightarrow b + \overrightarrow c \) Vì C’CBB’ là hình bình hành nên + \(\overrightarrow {B'C'} = \overrightarrow {BC} = - \overrightarrow b + \overrightarrow c \) + \(\overrightarrow {B'C} = \overrightarrow {B'C'} + \overrightarrow {B'B} = - \overrightarrow b + \overrightarrow c - \overrightarrow a \) c) Vì C’CBB’ là hình bình hành nên \(\overrightarrow {BC'} = \overrightarrow {BC} + \overrightarrow {BB'} = - \overrightarrow b + \overrightarrow c + \overrightarrow a \)
Quảng cáo
|