Giải bài tập 1 trang 36 SGK Toán 12 tập 1 - Chân trời sáng tạo

Khảo sát và vẽ đồ thị của các hàm số sau: a) \(y = {x^3} + x - 2\) b) \(y = 2{x^3} + {x^2} - \frac{1}{2}x - 3\)

Tổng hợp đề thi học kì 1 lớp 12 tất cả các môn - Chân trời sáng tạo

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa

Quảng cáo

Đề bài

 

 

Khảo sát và vẽ đồ thị của các hàm số sau:

a) \(y = {x^3} + x - 2\)

b) \(y = 2{x^3} + {x^2} - \frac{1}{2}x - 3\)

 

Phương pháp giải - Xem chi tiết

Bước 1. Tìm tập xác định của hàm số

Bước 2. Xét sự biến thiên của hàm số

− Tìm đạo hàm y', xét dấu y', xác định khoảng đơn điệu, cực trị (nếu có) của hàm số.

− Tìm giới hạn tại vô cực, giới hạn vô cực của hàm số và các cực trị của đồ thị hàm số (nếu có).

− Lập bảng biến thiên của hàm số.

Bước 3. Vẽ đồ thị của hàm số

− Xác định các điểm cực trị (nếu có), giao điểm của đồ thị với các trục toạ độ

− Vẽ các đường tiệm cận của đồ thị hàm số (nếu có).

− Vẽ đồ thị hàm số.

 

Lời giải chi tiết

a) \(y = {x^3} + x - 2\)

Tập xác định: \(D = \mathbb{R}\)

  • Chiều biến thiên:

\(y' = 3{x^2} + 1 > 0\forall x \in \mathbb{R}\) nên hàm số đồng biến trên \(\mathbb{R}\)

  • Cực trị:

Hàm số không có cực trị

  • Các giới hạn tại vô cực:

\(\mathop {\lim }\limits_{x \to  - \infty } y = \mathop {\lim }\limits_{x \to  - \infty } ({x^3} + x - 2) =  - \infty \); \(\mathop {\lim }\limits_{x \to  + \infty } y = \mathop {\lim }\limits_{x \to  + \infty } ({x^3} + x - 2) =  + \infty \)

  • Bảng biến thiên:

Khi x = 0 thì y = -2 nên (0; -2) là giao điểm của đồ thị với trục Oy

Ta có: \(y = 0 \Leftrightarrow {x^3} + x - 2 = 0 \Leftrightarrow x = 1\)

Vậy đồ thị của hàm số giao với trục Ox tại điểm (1; 0)

b) \(y = 2{x^3} + {x^2} - \frac{1}{2}x - 3\)

Tập xác định: \(D = \mathbb{R}\)

  • Chiều biến thiên:

\(y' = 6{x^2} + 2x - \frac{1}{2} = 0 \Leftrightarrow \left[ \begin{array}{l}x =  - \frac{1}{2}\\x = \frac{1}{6}\end{array} \right.\)

Trên các khoảng (\( - \infty \); \( - \frac{1}{2}\)), (\(\frac{1}{6}\); \( + \infty \)) thì y' < 0 nên hàm số nghịch biến trên mỗi khoảng đó. Trên khoảng (\( - \frac{1}{2}\); \(\frac{1}{6}\)) thì y' > 0 nên hàm số đồng biến trên khoảng đó.

  • Cực trị:

Hàm số đạt cực đại tại x = \( - \frac{1}{2}\) và \({y_{cd}} =  - \frac{{11}}{4}\)

Hàm số đạt cực tiểu tại x = \(\frac{1}{6}\) và \({y_{ct}} =  - \frac{{329}}{{108}}\)

  • Các giới hạn tại vô cực:

\(\mathop {\lim }\limits_{x \to  - \infty } y = \mathop {\lim }\limits_{x \to  - \infty } (2{x^3} + {x^2} - \frac{1}{2}x - 3) =  - \infty \); \(\mathop {\lim }\limits_{x \to  + \infty } y = \mathop {\lim }\limits_{x \to  + \infty } (2{x^3} + {x^2} - \frac{1}{2}x - 3) =  + \infty \)

  • Bảng biến thiên:

Khi x = 0 thì y = -3 nên (0; -3) là giao điểm của đồ thị với trục Oy

Ta có: \(y = 0 \Leftrightarrow 2{x^3} + {x^2} - \frac{1}{2}x - 3 = 0 \Leftrightarrow x = 1,06\)

Vậy đồ thị của hàm số giao với trục Ox tại điểm (1,06; 0)

 

Quảng cáo

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close