Bài 97 trang 151 SBT toán 7 tập 1Giải bài 97 trang 151 sách bài tập toán 7 tập 1. Cho tam giác ABC cân tại A. Qua B kẻ đường thẳng vuông góc với AB, qua C kẻ đường vuông góc với AC, chúng cắt nhau tại D... Quảng cáo
Đề bài Cho tam giác \(ABC\) cân tại \(A.\) Qua \(B\) kẻ đường thẳng vuông góc với \(AB\), qua \(C\) kẻ đường vuông góc với \(AC\), chúng cắt nhau tại \(D\). Chứng minh rằng \(AD\) là tia phân giác của góc \(A.\) Phương pháp giải - Xem chi tiết Ta đi chứng minh 2 tam giác chứa 2 góc \(\widehat {{A_1}}\) và \(\widehat {{A_2}}\) bằng nhau. Nếu cạnh huyền và một cạnh góc vuông của tam giác vuông này bằng cạnh huyền và một cạnh góc vuông của tam giác vuông kia thì hai tam giác vuông đó bằng nhau. Lời giải chi tiết Xét hai tam giác vuông \(ABD\) và \(ACD\) có: \(\widehat {{ABD}} = \widehat {{ACD}}=90^0\) \(AB = AC\) (vì tam giác \(ABC\) cân tại \(A\)) \(AD\) cạnh chung \( \Rightarrow ∆ABD = ∆ACD\) (cạnh huyền - cạnh góc vuông). \( \Rightarrow \widehat {{A_1}} = \widehat {{A_2}}\) (hai góc tương ứng). Vậy \(AD\) là tia phân giác của góc \(A.\) Loigiaihay.com
Quảng cáo
|