Giải bài 9 trang 34 sách bài tập toán 12 - Chân trời sáng tạoCho hàm số \(y = \frac{{{x^2} - 2{\rm{x}} + 6}}{{x + 1}}\). A. Đồ thị hàm số có một tiệm cận xiên là \(y = x - 3\). B. Đồ thị hàm số có một tiệm cận xiên là \(y = x + 3\). C. Đồ thị hàm số có một tiệm cận xiên là \(y = x + 1\). D. Đồ thị hàm số không có tiệm cận xiên. Tổng hợp đề thi giữa kì 1 lớp 12 tất cả các môn - Chân trời sáng tạo Toán - Văn - Anh - Lí - Hóa - Sinh Quảng cáo
Đề bài Cho hàm số \(y = \frac{{{x^2} - 2{\rm{x}} + 6}}{{x + 1}}\). A. Đồ thị hàm số có một tiệm cận xiên là \(y = x - 3\). B. Đồ thị hàm số có một tiệm cận xiên là \(y = x + 3\). C. Đồ thị hàm số có một tiệm cận xiên là \(y = x + 1\). D. Đồ thị hàm số không có tiệm cận xiên. Phương pháp giải - Xem chi tiết ‒ Tìm tiệm cận xiên \(y = ax + b\left( {a \ne 0} \right)\): \(a = \mathop {\lim }\limits_{x \to + \infty } \frac{{f\left( x \right)}}{x}\) và \(b = \mathop {\lim }\limits_{x \to + \infty } \left[ {f\left( x \right) - ax} \right]\) hoặc \(a = \mathop {\lim }\limits_{x \to - \infty } \frac{{f\left( x \right)}}{x}\) và \(b = \mathop {\lim }\limits_{x \to - \infty } \left[ {f\left( x \right) - ax} \right]\) Lời giải chi tiết Ta có: \(a = \mathop {\lim }\limits_{x \to + \infty } \frac{{f\left( x \right)}}{x} = \mathop {\lim }\limits_{x \to + \infty } \frac{{{x^2} - 2{\rm{x}} + 6}}{{x\left( {x + 1} \right)}} = 1\) và \(b = \mathop {\lim }\limits_{x \to + \infty } \left[ {f\left( x \right) - x} \right] = \mathop {\lim }\limits_{x \to + \infty } \left[ {\frac{{{x^2} - 2{\rm{x}} + 6}}{{x + 1}} - x} \right] = \mathop {\lim }\limits_{x \to + \infty } \frac{{ - 3{\rm{x}} + 6}}{{x + 1}} = - 3\) Vậy đường thẳng \(y = x - 3\) là tiệm cận xiên của đồ thị hàm số đã cho. Chọn A.
Quảng cáo
|