Giải bài 14 trang 35 sách bài tập toán 12 - Chân trời sáng tạo

Chọn đúng hoặc sai cho mỗi ý a, b, c, d. Đồ thị hàm số (y = frac{{{x^2} - 2{rm{x}}}}{{x + 1}}) có hai trục đối xứng là hai đường phân giác của các góc tạo bởi hai đường thẳng: a) (x = 1) và (y = x - 3). b) (x = 1) và (y = - x + 3). c) (x = - 1) và (y = x - 3). d) (x = - 1) và (y = x + 3).

Quảng cáo

Đề bài

Chọn đúng hoặc sai cho mỗi ý a, b, c, d.

Đồ thị hàm số \(y = \frac{{{x^2} - 2{\rm{x}}}}{{x + 1}}\) có hai trục đối xứng là hai đường phân giác của các góc tạo bởi hai đường thẳng:

a) \(x = 1\) và \(y = x - 3\).

b) \(x = 1\) và \(y =  - x + 3\).

c) \(x =  - 1\) và \(y = x - 3\).

d) \(x =  - 1\) và \(y = x + 3\).

Phương pháp giải - Xem chi tiết

‒ Tìm tiệm cận đứng: Tính \(\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right)\) hoặc \(\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right)\), nếu một trong các giới hạn sau thoả mãn:

\(\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) =  + \infty ;\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) =  - \infty ;\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) =  + \infty ;\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) =  - \infty \)

thì đường thẳng \(x = {x_0}\) là đường tiệm cận đứng.

‒ Tìm tiệm cận xiên \(y = ax + b\left( {a \ne 0} \right)\):

\(a = \mathop {\lim }\limits_{x \to  + \infty } \frac{{f\left( x \right)}}{x}\) và \(b = \mathop {\lim }\limits_{x \to  + \infty } \left[ {f\left( x \right) - ax} \right]\) hoặc

\(a = \mathop {\lim }\limits_{x \to  - \infty } \frac{{f\left( x \right)}}{x}\) và \(b = \mathop {\lim }\limits_{x \to  - \infty } \left[ {f\left( x \right) - ax} \right]\)

Lời giải chi tiết

Tập xác định: \(D = \mathbb{R}\backslash \left\{ { - 1} \right\}\).

Ta có:

• \(\mathop {\lim }\limits_{x \to  - {1^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to  - {1^ - }} \left( {\frac{{{x^2} - 2{\rm{x}}}}{{x + 1}}} \right) =  - \infty ;\mathop {\lim }\limits_{x \to  - {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to  - {1^ + }} \left( {\frac{{{x^2} - 2{\rm{x}}}}{{x + 1}}} \right) =  + \infty \)

Vậy \({\rm{x}} =  - 1\) là tiệm cận đứng của đồ thị hàm số đã cho.

• \(a = \mathop {\lim }\limits_{x \to  + \infty } \frac{{f\left( x \right)}}{x} = \mathop {\lim }\limits_{x \to  + \infty } \frac{{{x^2} - 2{\rm{x}}}}{{x\left( {x + 1} \right)}} = 1\) và

\(b = \mathop {\lim }\limits_{x \to  + \infty } \left[ {f\left( x \right) - x} \right] = \mathop {\lim }\limits_{x \to  + \infty } \left[ {\frac{{{x^2} - 2{\rm{x}}}}{{x + 1}} - x} \right] = \mathop {\lim }\limits_{x \to  + \infty } \frac{{ - 3{\rm{x}}}}{{x + 1}} =  - 3\)

Vậy đường thẳng \(y = x - 3\) là tiệm cận xiên của đồ thị hàm số đã cho.

a) S.

b) S.

c) Đ.

d) S.

Quảng cáo

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close