-
Bài 1 trang 70 SBT toán 12 - Chân trời sáng tạo
Cho điểm \(M\left( {2;3;5} \right)\) và vectơ \(\overrightarrow a = \left( {2;0; - 7} \right)\). a) Tìm toạ độ vectơ \(\overrightarrow {OM} \). b) Tìm toạ độ điểm \(N\) thoả mãn \(\overrightarrow {ON} = \overrightarrow a \).
Xem lời giải -
Bài 2 trang 70 SBT toán 12 - Chân trời sáng tạo
Cho (Aleft( {4; - 3;1} right)) và vectơ (overrightarrow u = left( {5;2; - 3} right)). Biểu diễn các vectơ sau đây theo các vectơ (overrightarrow i ,overrightarrow j ,overrightarrow k ). a) (overrightarrow {OA} ); b) (4overrightarrow u ).
Xem lời giải -
Bài 3 trang 70 SBT toán 12 - Chân trời sáng tạo
Cho điểm \(M\left( {9;3;6} \right)\). a) Gọi \({M_1},{M_2},{M_3}\) lần lượt là hình chiếu của điểm \(M\) trên các trục toạ độ \(Ox,Oy,Oz\). Tìm toạ độ các điểm \({M_1},{M_2},{M_3}\). b) Gọi \(N,P,Q\) lần lượt là hình chiếu của điểm \(M\) trên các mặt phẳng toạ độ \(\left( {Oxy} \right),\left( {Oyz} \right),\)\(\left( {Ozx} \right)\). Tìm toạ độ các điểm \(N,P,Q\).
Xem lời giải -
Bài 4 trang 71 SBT toán 12 - Chân trời sáng tạo
Cho hình hộp \(ABCD.A'B'C'D'\) có \(A\left( {5;7; - 4} \right),B\left( {6;8; - 3} \right),C\left( {6;7; - 3} \right),D'\left( {3;0;3} \right)\). Tìm toạ độ các đỉnh \(D\) và \(A'\).
Xem lời giải -
Bài 5 trang 71 SBT toán 12 - Chân trời sáng tạo
Cho điểm (Mleft( {5; - 7; - 2} right)) và vectơ (overrightarrow a = left( { - 3;0;1} right)). Hãy biểu diễn mỗi vectơ sau theo các vectơ (overrightarrow i ,overrightarrow j ,overrightarrow k ). a) (overrightarrow {OM} ); b) (overrightarrow a ).
Xem lời giải -
Bài 6 trang 71 SBT toán 12 - Chân trời sáng tạo
Cho hình hộp \(ABCD.A'B'C'D'\) có \(A\left( {2;0;2} \right),B\left( {4;2;4} \right),D\left( {2; - 2;2} \right),C'\left( {8;10; - 10} \right)\). Tìm toạ độ điểm \(A'\).
Xem lời giải -
Bài 7 trang 71 SBT toán 12 - Chân trời sáng tạo
Trên một sân tennis có kích thước như trong Hình 14a), người ta đã thiết lập một hệ toạ độ (Oxyz) (đơn vị trên mỗi trục là m) như trong Hình 14b). Hãy xác định toạ độ của các điểm (A,B).
Xem lời giải