Giải bài 4 trang 71 sách bài tập toán 12 - Chân trời sáng tạoCho hình hộp \(ABCD.A'B'C'D'\) có \(A\left( {5;7; - 4} \right),B\left( {6;8; - 3} \right),C\left( {6;7; - 3} \right),D'\left( {3;0;3} \right)\). Tìm toạ độ các đỉnh \(D\) và \(A'\). Tổng hợp đề thi học kì 1 lớp 12 tất cả các môn - Chân trời sáng tạo Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa Quảng cáo
Đề bài Cho hình hộp \(ABCD.A'B'C'D'\) có \(A\left( {5;7; - 4} \right),B\left( {6;8; - 3} \right),C\left( {6;7; - 3} \right),D'\left( {3;0;3} \right)\). Tìm toạ độ các đỉnh \(D\) và \(A'\). Phương pháp giải - Xem chi tiết ‒ Sử dụng toạ độ của vectơ \(\overrightarrow {AB} = \left( {{x_B} - {x_A};{y_B} - {y_A};{z_B} - {z_A}} \right)\). ‒ Sử dụng tính chất hai vectơ bằng nhau: Với \(\overrightarrow u = \left( {{x_1};{y_1};{z_1}} \right)\) và \(\overrightarrow v = \left( {{x_2};{y_2};{z_2}} \right)\), ta có: \(\overrightarrow u = \overrightarrow v \Leftrightarrow \left\{ \begin{array}{l}{x_1} = {x_2}\\{y_1} = {y_2}\\{z_1} = {z_2}\end{array} \right.\). Lời giải chi tiết Giả sử \(D\left( {{x_D};{y_D};{z_D}} \right)\). Ta có \(\overrightarrow {AD} = \left( {{x_D} - 5;{y_D} - 7;{z_D} + 4} \right)\). \(\overrightarrow {BC} = \left( {6 - 6;7 - 8;\left( { - 3} \right) - \left( { - 3} \right)} \right) = \left( {0; - 1;0} \right)\). \(ABCD\) là hình bình hành nên \(\overrightarrow {AD} = \overrightarrow {BC} \). \( \Leftrightarrow \left\{ \begin{array}{l}{x_D} - 5 = 0\\{y_D} - 7 = - 1\\{z_D} + 4 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_D} = 5\\{y_D} = 6\\{z_D} = - 4\end{array} \right.\). Vậy \(D\left( {5;6; - 4} \right)\). Giả sử \(A'\left( {{x_{A'}};{y_{A'}};{z_{A'}}} \right)\). Ta có \(\overrightarrow {AA'} = \left( {{x_{A'}} - 5;{y_{A'}} - 7;{z_{A'}} + 4} \right)\). \(\overrightarrow {DD'} = \left( {3 - 5;0 - 6;3 - \left( { - 4} \right)} \right) = \left( { - 2; - 6;7} \right)\). \(ABCD\) là hình bình hành nên \(\overrightarrow {AD} = \overrightarrow {BC} \). \( \Leftrightarrow \left\{ \begin{array}{l}{x_{A'}} - 5 = - 2\\{y_{A'}} - 7 = - 6\\{z_{A'}} + 4 = 7\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_{A'}} = 3\\{y_{A'}} = 1\\{z_{A'}} = 3\end{array} \right.\). Vậy \(A'\left( {3;1;3} \right)\).
Quảng cáo
|